Skip to main content

A fast and scalable algorithm for time series motif mining.

Project description

This is a python wrapper for ATTIMO, a fast algorithm for mining time series motifs, with probabilistic guarantees.

The inner workings and guarantees of the algorithm are described in this paper.

If you find this software useful for your research, please use the following citation:

@article{DBLP:journals/pvldb/CeccarelloG22,
  author    = {Matteo Ceccarello and
               Johann Gamper},
  title     = {Fast and Scalable Mining of Time Series Motifs with Probabilistic
               Guarantees},
  journal   = {Proc. {VLDB} Endow.},
  volume    = {15},
  number    = {13},
  pages     = {3841--3853},
  year      = {2022},
  url       = {https://www.vldb.org/pvldb/vol15/p3841-ceccarello.pdf},
  timestamp = {Wed, 11 Jan 2023 17:06:38 +0100},
  biburl    = {https://dblp.org/rec/journals/pvldb/CeccarelloG22.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Installation

pyATTIMO is a Rust library wrapped in Python. Therefore, if a wheel is available for your platform, you can install it simply by invoking:

pip install pyattimo

Otherwise, you need the Rust toolchain installed to be able to compile it. The simplest way is to visit https://rustup.rs/ and follow the instructions there. You will need the nightly toolchain:

curl https://sh.rustup.rs -sSf | sh -s -- --default-toolchain nightly

After that, you can just run:

pip install pyattimo

At this point, you should have the pyattimo library available in your interpreter.

Usage

In essence, the library provides an iterator over the motifs of the given time series. The following snippet illustrates the basic usage:

import pyattimo

# Load an example time series
ts = pyattimo.load_dataset("ecg", prefix=1000000)

# Create the motifs iterator
motifs = pyattimo.MotifsIterator(ts, w=1000, max_k=100)

# Get the top motif via the iterator interface
m = next(motifs)

# Plot the motif just obtained
m.plot()

Further information and examples can be found here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyattimo-0.4.4.tar.gz (167.9 kB view details)

Uploaded Source

Built Distributions

pyattimo-0.4.4-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (999.9 kB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ x86-64

pyattimo-0.4.4-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (936.8 kB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ppc64le

pyattimo-0.4.4-cp37-abi3-manylinux_2_17_i686.manylinux2014_i686.whl (892.0 kB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ i686

pyattimo-0.4.4-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (904.2 kB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ARM64

pyattimo-0.4.4-cp37-abi3-macosx_11_0_arm64.whl (754.6 kB view details)

Uploaded CPython 3.7+ macOS 11.0+ ARM64

pyattimo-0.4.4-cp37-abi3-macosx_10_12_x86_64.whl (859.1 kB view details)

Uploaded CPython 3.7+ macOS 10.12+ x86-64

File details

Details for the file pyattimo-0.4.4.tar.gz.

File metadata

  • Download URL: pyattimo-0.4.4.tar.gz
  • Upload date:
  • Size: 167.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.0

File hashes

Hashes for pyattimo-0.4.4.tar.gz
Algorithm Hash digest
SHA256 b1524017b53adaad7958dfa81273b4be8db36f14814d8012751ff8b494de10fd
MD5 732808a8baa185a18555d722389383a0
BLAKE2b-256 297611bcc206a10fa9c48bc264ca7b2647d29d884e2205e85a0fed145da2584d

See more details on using hashes here.

File details

Details for the file pyattimo-0.4.4-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyattimo-0.4.4-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 87178432590364d0ee1e642c2b27330a4343559ff8991ba25279f8ac40dcdb7f
MD5 205ea7c3951f4a7336b7f14783075d8e
BLAKE2b-256 a2cce1f6f6912751d0223030c0eb51374e460edf1848d1241d498172c01c2e82

See more details on using hashes here.

File details

Details for the file pyattimo-0.4.4-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyattimo-0.4.4-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 6eeda1108db85fe098c3fa9993c50c2c43231858e3e04d282eb58e6f26e7b70a
MD5 5ece6e0cf51e5911065cf7e63641ccf5
BLAKE2b-256 52f94f90f67a1ce75bfbd4443107738f11cc4ce37a0294a4189b547b677c07dc

See more details on using hashes here.

File details

Details for the file pyattimo-0.4.4-cp37-abi3-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyattimo-0.4.4-cp37-abi3-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 41bc902f4e8c9e1f20d78f395f44bcbdbf151ac34e449ec98f8661b4424f2448
MD5 26f96cb617fa22208885ca0b5f9bd6dd
BLAKE2b-256 89488a73d6704ba4aa0ed5547478ea99b96342cbdf183e8b087d1916e6ef306f

See more details on using hashes here.

File details

Details for the file pyattimo-0.4.4-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyattimo-0.4.4-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 969bf7656ef6581b84638b7b976e41124c1760787e0bafd337d11d0dc8381f82
MD5 58b7abd4d18d3df6ddafa019b761591e
BLAKE2b-256 19b8248626623c1868d67421a5e4b09b599b49442051f0fa576648d9a4c751bb

See more details on using hashes here.

File details

Details for the file pyattimo-0.4.4-cp37-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyattimo-0.4.4-cp37-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 19c9f17060043fb3ce6365c593afa8166b5d90bf36f046aaebefcc47194b1288
MD5 8b9ab924201d8b897bbb354471957887
BLAKE2b-256 08bc72f6cd872ba85e1f51f0d17ca5be6e8824499f321b9919345f0ac7487e7d

See more details on using hashes here.

File details

Details for the file pyattimo-0.4.4-cp37-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pyattimo-0.4.4-cp37-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 8992df1e433e561b836b2638990583361389824c3c5773cbaed075f66e904dc2
MD5 112236161cb8f511333a03ed8542cf37
BLAKE2b-256 5ce15f6429e0a639ba71f22c19897317557e76db62ede56ebf1979c0eaab139b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page