Skip to main content

A fast and scalable algorithm for time series motif mining.

Project description

This is a python wrapper for ATTIMO, a fast algorithm for mining time series motifs, with probabilistic guarantees.

The inner workings and guarantees of the algorithm are described in this paper.

If you find this software useful for your research, please use the following citation:

@article{DBLP:journals/pvldb/CeccarelloG22,
  author    = {Matteo Ceccarello and
               Johann Gamper},
  title     = {Fast and Scalable Mining of Time Series Motifs with Probabilistic
               Guarantees},
  journal   = {Proc. {VLDB} Endow.},
  volume    = {15},
  number    = {13},
  pages     = {3841--3853},
  year      = {2022},
  url       = {https://www.vldb.org/pvldb/vol15/p3841-ceccarello.pdf},
  timestamp = {Wed, 11 Jan 2023 17:06:38 +0100},
  biburl    = {https://dblp.org/rec/journals/pvldb/CeccarelloG22.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Installation

pyATTIMO is a Rust library wrapped in Python. Therefore, if a wheel is available for your platform, you can install it simply by invoking:

pip install pyattimo

Otherwise, you need the Rust toolchain installed to be able to compile it. The simplest way is to visit https://rustup.rs/ and follow the instructions there. You will need the nightly toolchain:

curl https://sh.rustup.rs -sSf | sh -s -- --default-toolchain nightly

After that, you can just run:

pip install pyattimo

At this point, you should have the pyattimo library available in your interpreter.

Usage

In essence, the library provides an iterator over the motifs of the given time series. The following snippet illustrates the basic usage:

import pyattimo

# Load an example time series
ts = pyattimo.load_dataset("ecg", prefix=1000000)

# Create the motifs iterator
motifs = pyattimo.MotifsIterator(ts, w=1000, max_k=100)

# Get the top motif via the iterator interface
m = next(motifs)

# Plot the motif just obtained
m.plot()

Further information and examples can be found here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyattimo-0.5.1.tar.gz (155.9 kB view details)

Uploaded Source

Built Distributions

pyattimo-0.5.1-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ x86-64

pyattimo-0.5.1-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (964.8 kB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ppc64le

pyattimo-0.5.1-cp37-abi3-manylinux_2_17_i686.manylinux2014_i686.whl (928.3 kB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ i686

pyattimo-0.5.1-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (923.8 kB view details)

Uploaded CPython 3.7+ manylinux: glibc 2.17+ ARM64

pyattimo-0.5.1-cp37-abi3-macosx_11_0_arm64.whl (786.8 kB view details)

Uploaded CPython 3.7+ macOS 11.0+ ARM64

pyattimo-0.5.1-cp37-abi3-macosx_10_12_x86_64.whl (892.1 kB view details)

Uploaded CPython 3.7+ macOS 10.12+ x86-64

File details

Details for the file pyattimo-0.5.1.tar.gz.

File metadata

  • Download URL: pyattimo-0.5.1.tar.gz
  • Upload date:
  • Size: 155.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.7.1

File hashes

Hashes for pyattimo-0.5.1.tar.gz
Algorithm Hash digest
SHA256 62f534b0f5e614c9a4c347d8da00434c34e48cad2d08a15afda23d3a715606aa
MD5 b0997e0ae514058a9edffaa4d40668c9
BLAKE2b-256 4624e87c5f4d947e31ba0b4124a32b428b899dc6887e3650852111b40a43206f

See more details on using hashes here.

File details

Details for the file pyattimo-0.5.1-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyattimo-0.5.1-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 724fa6dd10cfeb0ea390e440460e5f549dae6e59be16962e9ce47359e985725e
MD5 7bf14ede19915213f323b37ef9fc76a4
BLAKE2b-256 431495681523609cd98d488376fe25374257ba71c88ee5ff5b82f4c5083242f6

See more details on using hashes here.

File details

Details for the file pyattimo-0.5.1-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pyattimo-0.5.1-cp37-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 09cebad4cd268295bbeced58aae1f19880be90e6468d6b4909bb75d364bb8b51
MD5 386b9d71400c826bafcec2efa65c110f
BLAKE2b-256 fe62e45e066d54d55848430ba2450b17d3688d07d3c9f0d8c3a149929641ab50

See more details on using hashes here.

File details

Details for the file pyattimo-0.5.1-cp37-abi3-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for pyattimo-0.5.1-cp37-abi3-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1303575c694a90fc152d1e0d1f5f1197e1515d43282276e31f6657cda69579e5
MD5 9f4922f007089498d4aac1ab98cfb9de
BLAKE2b-256 ac5252bc9671d390eab9dbbf9f29499a2d2b10718e87572329332e9752a4e7a0

See more details on using hashes here.

File details

Details for the file pyattimo-0.5.1-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyattimo-0.5.1-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dfb89140e169a874c4f3664b0f3c43f1ccf7950fd40b85868be403059d7840a2
MD5 39b50571a4478129a340624424b4b19a
BLAKE2b-256 986c94780b12d76a6f85c242419a2350168cca0d8e448261e30aee15eed3888b

See more details on using hashes here.

File details

Details for the file pyattimo-0.5.1-cp37-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyattimo-0.5.1-cp37-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 719e413ff236ab978f621a3fac0a49a3615bcf2b44151d9576396fe99e7b39e5
MD5 62d59fa5b5e6bf0dae99e92bc06daa9b
BLAKE2b-256 39541359895a78ceb69509b5997bfb5b8c97018bd545dc87feccf85dce4c4129

See more details on using hashes here.

File details

Details for the file pyattimo-0.5.1-cp37-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pyattimo-0.5.1-cp37-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 1d3666d71e3a6202a4ed896d9ebf960883fc4246a702daa0f4f845f42ce7befc
MD5 7fb2cb9a910c09490cf94853a50e1c88
BLAKE2b-256 73f39e8def7a878c42851e3115825517b0356dd27a4509a2d0eb3374de12a10a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page