Python Bundle Adjustment Routines
Project description
Python Bundle Adjustment
- Load the data.
from pyba.CameraNetwork import CameraNetwork
import pickle
import glob
import numpy as np
image_path = './data/test/camera_{cam_id}_img_00000{img_id}.jpg'
pr_path = './data/test/df3d_2/pose_result*.pkl'
d = pickle.load(open(glob.glob(pr_path)[0], 'rb'))
camNet = CameraNetwork(points2d=d['points2d'], calib=d, image_path=image_path)
points2d is a numpy array with shape T x J x 2. All units are in pixels. calib is a nested dictionary.
calib = {0: {'R': array([[ 0.90885957, 0.006461 , -0.41705219],
[ 0.01010426, 0.99924554, 0.03750006],
[ 0.41697983, -0.0382963 , 0.90810859]]),
'tvec': array([1.65191596e+00, 2.22582670e-02, 1.18353733e+02]),
'intr': array([[1.60410e+04, 0.00000e+00, 2.40000e+02],
[0.00000e+00, 1.59717e+04, 4.80000e+02],
[0.00000e+00, 0.00000e+00, 1.00000e+00]]),
'distort': array([0., 0., 0., 0., 0.])},
1: {'R': array([[ 0.59137248, 0.02689833, -0.80594979],
[-0.00894927, 0.9996009 , 0.02679478],
[ 0.80634887, -0.00863303, 0.59137718]]),
'tvec': array([ 1.02706542e+00, -9.25820468e-02, 1.18251732e+02]),
'intr': array([[1.60410e+04, 0.00000e+00, 2.40000e+02],
[0.00000e+00, 1.59717e+04, 4.80000e+02],
[0.00000e+00, 0.00000e+00, 1.00000e+00]]),
'distort': array([0., 0., 0., 0., 0.])},
}
- Visualize the 2d pose.
import matplotlib.pyplot as plt
img = camNet.plot_2d(0, points='points2d')
plt.figure(figsize=(20,20))
plt.imshow(img, cmap='gray')
plt.axis('off')
- Do the bundle adjustment.
from pyba.pyba import bundle_adjust
bundle_adjust(camNet)
Iteration Total nfev Cost Cost reduction Step norm Optimality
0 1 7.1659e+05 7.27e+05
1 2 2.9376e+05 4.23e+05 1.08e+01 3.12e+05
2 4 2.6084e+05 3.29e+04 2.39e+00 1.85e+05
3 5 2.4676e+05 1.41e+04 3.04e+00 2.20e+04
4 7 2.4604e+05 7.20e+02 1.32e+00 1.75e+04
5 8 2.4579e+05 2.53e+02 2.67e+00 2.86e+04
6 9 2.4487e+05 9.20e+02 2.53e+00 2.18e+04
7 10 2.4472e+05 1.43e+02 2.48e+00 2.02e+04
8 11 2.4441e+05 3.18e+02 6.71e-01 1.77e+03
9 12 2.4440e+05 9.43e+00 6.78e-01 2.13e+03
`ftol` termination condition is satisfied.
Function evaluations 12, initial cost 7.1659e+05, final cost 2.4440e+05, first-order optimality 2.13e+03.
- Visualize the resulting camera rig.
fig = plt.figure(figsize=(10,10))
ax3d = fig.add_subplot(111, projection='3d')
camNet.draw(ax3d, size=20)
camNet.plot_3d(ax3d, img_id=0, size=10)
TODO
- Implement distortion, limit to two parameters
- Implement intrinsic optimization
- make losses the same with the scipy tutorial
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pyba-0.1.tar.gz
(7.3 kB
view details)
Built Distribution
pyba-0.1-py3-none-any.whl
(9.1 kB
view details)
File details
Details for the file pyba-0.1.tar.gz
.
File metadata
- Download URL: pyba-0.1.tar.gz
- Upload date:
- Size: 7.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 47d5881e5f7ac367b79f60de586fa71c4f98f027381f206145c1e2557c743252 |
|
MD5 | 0a9e3ae71699630c1c585277055a4532 |
|
BLAKE2b-256 | 7627043155c8b41a4fd7ef0d5d40a5535aa8648615b6a8895e55e2a9aa18381b |
File details
Details for the file pyba-0.1-py3-none-any.whl
.
File metadata
- Download URL: pyba-0.1-py3-none-any.whl
- Upload date:
- Size: 9.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dfefaa4100c84e5de15bba83e5b7b0355362521a9da8c79c4506e8c7f09b29b0 |
|
MD5 | 00e2ca3d7282613ba3eaf96e6624c188 |
|
BLAKE2b-256 | 679025968130f5f1c907041ae8ba053871df80771117a65e1a64cd2f97b87d3e |