Skip to main content

Python Bundle Adjustment Routines

Project description

Python Bundle Adjustment

  • Load the data.
from pyba.CameraNetwork import CameraNetwork
import pickle
import glob
import numpy as np

image_path = './data/test/camera_{cam_id}_img_00000{img_id}.jpg'
pr_path = './data/test/df3d_2/pose_result*.pkl'

d = pickle.load(open(glob.glob(pr_path)[0], 'rb'))
camNet = CameraNetwork(points2d=d['points2d'], calib=d, image_path=image_path)

points2d is a numpy array with shape T x J x 2. All units are in pixels. calib is a nested dictionary.

calib = {0: {'R': array([[ 0.90885957,  0.006461  , -0.41705219],
         [ 0.01010426,  0.99924554,  0.03750006],
         [ 0.41697983, -0.0382963 ,  0.90810859]]),
  'tvec': array([1.65191596e+00, 2.22582670e-02, 1.18353733e+02]),
  'intr': array([[1.60410e+04, 0.00000e+00, 2.40000e+02],
         [0.00000e+00, 1.59717e+04, 4.80000e+02],
         [0.00000e+00, 0.00000e+00, 1.00000e+00]]),
  'distort': array([0., 0., 0., 0., 0.])},
 1: {'R': array([[ 0.59137248,  0.02689833, -0.80594979],
         [-0.00894927,  0.9996009 ,  0.02679478],
         [ 0.80634887, -0.00863303,  0.59137718]]),
  'tvec': array([ 1.02706542e+00, -9.25820468e-02,  1.18251732e+02]),
  'intr': array([[1.60410e+04, 0.00000e+00, 2.40000e+02],
         [0.00000e+00, 1.59717e+04, 4.80000e+02],
         [0.00000e+00, 0.00000e+00, 1.00000e+00]]),
  'distort': array([0., 0., 0., 0., 0.])},
}
  • Visualize the 2d pose.
import matplotlib.pyplot as plt
img = camNet.plot_2d(0, points='points2d')
plt.figure(figsize=(20,20))
plt.imshow(img, cmap='gray')
plt.axis('off')

image

  • Do the bundle adjustment.
from pyba.pyba import bundle_adjust 
bundle_adjust(camNet)
   Iteration     Total nfev        Cost      Cost reduction    Step norm     Optimality   
       0              1         7.1659e+05                                    7.27e+05    
       1              2         2.9376e+05      4.23e+05       1.08e+01       3.12e+05    
       2              4         2.6084e+05      3.29e+04       2.39e+00       1.85e+05    
       3              5         2.4676e+05      1.41e+04       3.04e+00       2.20e+04    
       4              7         2.4604e+05      7.20e+02       1.32e+00       1.75e+04    
       5              8         2.4579e+05      2.53e+02       2.67e+00       2.86e+04    
       6              9         2.4487e+05      9.20e+02       2.53e+00       2.18e+04    
       7             10         2.4472e+05      1.43e+02       2.48e+00       2.02e+04    
       8             11         2.4441e+05      3.18e+02       6.71e-01       1.77e+03    
       9             12         2.4440e+05      9.43e+00       6.78e-01       2.13e+03    
`ftol` termination condition is satisfied.
Function evaluations 12, initial cost 7.1659e+05, final cost 2.4440e+05, first-order optimality 2.13e+03.
  • Visualize the resulting camera rig.
fig = plt.figure(figsize=(10,10))
ax3d = fig.add_subplot(111, projection='3d')

camNet.draw(ax3d, size=20)
camNet.plot_3d(ax3d, img_id=0, size=10)

TODO

  • Implement distortion, limit to two parameters
  • Implement intrinsic optimization
  • make losses the same with the scipy tutorial

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyba-0.1.tar.gz (7.3 kB view details)

Uploaded Source

Built Distribution

pyba-0.1-py3-none-any.whl (9.1 kB view details)

Uploaded Python 3

File details

Details for the file pyba-0.1.tar.gz.

File metadata

  • Download URL: pyba-0.1.tar.gz
  • Upload date:
  • Size: 7.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.13

File hashes

Hashes for pyba-0.1.tar.gz
Algorithm Hash digest
SHA256 47d5881e5f7ac367b79f60de586fa71c4f98f027381f206145c1e2557c743252
MD5 0a9e3ae71699630c1c585277055a4532
BLAKE2b-256 7627043155c8b41a4fd7ef0d5d40a5535aa8648615b6a8895e55e2a9aa18381b

See more details on using hashes here.

File details

Details for the file pyba-0.1-py3-none-any.whl.

File metadata

  • Download URL: pyba-0.1-py3-none-any.whl
  • Upload date:
  • Size: 9.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.13

File hashes

Hashes for pyba-0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 dfefaa4100c84e5de15bba83e5b7b0355362521a9da8c79c4506e8c7f09b29b0
MD5 00e2ca3d7282613ba3eaf96e6624c188
BLAKE2b-256 679025968130f5f1c907041ae8ba053871df80771117a65e1a64cd2f97b87d3e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page