Skip to main content

Python Bundle Adjustment Routines

Project description

Python Bundle Adjustment

  • Load the data.
from pyba.CameraNetwork import CameraNetwork
import pickle
import glob
import numpy as np

image_path = './data/test/camera_{cam_id}_img_00000{img_id}.jpg'
pr_path = './data/test/df3d_2/pose_result*.pkl'

d = pickle.load(open(glob.glob(pr_path)[0], 'rb'))
camNet = CameraNetwork(points2d=d['points2d'], calib=d, image_path=image_path)

points2d is a numpy array with shape T x J x 2. All units are in pixels. calib is a nested dictionary.

calib = {0: {'R': array([[ 0.90885957,  0.006461  , -0.41705219],
         [ 0.01010426,  0.99924554,  0.03750006],
         [ 0.41697983, -0.0382963 ,  0.90810859]]),
  'tvec': array([1.65191596e+00, 2.22582670e-02, 1.18353733e+02]),
  'intr': array([[1.60410e+04, 0.00000e+00, 2.40000e+02],
         [0.00000e+00, 1.59717e+04, 4.80000e+02],
         [0.00000e+00, 0.00000e+00, 1.00000e+00]]),
  'distort': array([0., 0., 0., 0., 0.])},
 1: {'R': array([[ 0.59137248,  0.02689833, -0.80594979],
         [-0.00894927,  0.9996009 ,  0.02679478],
         [ 0.80634887, -0.00863303,  0.59137718]]),
  'tvec': array([ 1.02706542e+00, -9.25820468e-02,  1.18251732e+02]),
  'intr': array([[1.60410e+04, 0.00000e+00, 2.40000e+02],
         [0.00000e+00, 1.59717e+04, 4.80000e+02],
         [0.00000e+00, 0.00000e+00, 1.00000e+00]]),
  'distort': array([0., 0., 0., 0., 0.])},
}
  • Visualize the 2d pose.
import matplotlib.pyplot as plt
img = camNet.plot_2d(0, points='points2d')
plt.figure(figsize=(20,20))
plt.imshow(img, cmap='gray')
plt.axis('off')

image

  • Do the bundle adjustment.
from pyba.pyba import bundle_adjust 
bundle_adjust(camNet)
   Iteration     Total nfev        Cost      Cost reduction    Step norm     Optimality   
       0              1         7.1659e+05                                    7.27e+05    
       1              2         2.9376e+05      4.23e+05       1.08e+01       3.12e+05    
       2              4         2.6084e+05      3.29e+04       2.39e+00       1.85e+05    
       3              5         2.4676e+05      1.41e+04       3.04e+00       2.20e+04    
       4              7         2.4604e+05      7.20e+02       1.32e+00       1.75e+04    
       5              8         2.4579e+05      2.53e+02       2.67e+00       2.86e+04    
       6              9         2.4487e+05      9.20e+02       2.53e+00       2.18e+04    
       7             10         2.4472e+05      1.43e+02       2.48e+00       2.02e+04    
       8             11         2.4441e+05      3.18e+02       6.71e-01       1.77e+03    
       9             12         2.4440e+05      9.43e+00       6.78e-01       2.13e+03    
`ftol` termination condition is satisfied.
Function evaluations 12, initial cost 7.1659e+05, final cost 2.4440e+05, first-order optimality 2.13e+03.
  • Visualize the resulting camera rig.
fig = plt.figure(figsize=(10,10))
ax3d = fig.add_subplot(111, projection='3d')

camNet.draw(ax3d, size=20)
camNet.plot_3d(ax3d, img_id=0, size=10)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyba-0.11.tar.gz (7.2 kB view details)

Uploaded Source

Built Distribution

pyba-0.11-py3-none-any.whl (9.0 kB view details)

Uploaded Python 3

File details

Details for the file pyba-0.11.tar.gz.

File metadata

  • Download URL: pyba-0.11.tar.gz
  • Upload date:
  • Size: 7.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.13

File hashes

Hashes for pyba-0.11.tar.gz
Algorithm Hash digest
SHA256 1d4aed6526db70b550f53757813e98c9c9716bcbe02a9403f85d5096d7b91c04
MD5 f048d103b02c287f1a652ffc76d9eefd
BLAKE2b-256 f9ea82a715f4c4d885fce4280ec5711b421c7d27928819aac7c8435551c144f9

See more details on using hashes here.

File details

Details for the file pyba-0.11-py3-none-any.whl.

File metadata

  • Download URL: pyba-0.11-py3-none-any.whl
  • Upload date:
  • Size: 9.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.3 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.6.13

File hashes

Hashes for pyba-0.11-py3-none-any.whl
Algorithm Hash digest
SHA256 b86ef0cc5722111b8246edeca625eac5d9b4726760f9730df0e2773afa6d5912
MD5 8c27d98cbf69945efa5398d5f37f5c89
BLAKE2b-256 286cf8a616fdeb2485cf39f29e5faee4d441d5fbc750623a4f13c71c7eda9638

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page