Skip to main content

fast base16384 encode and decode

Project description

✨ pybase16384 ✨

The python binding for base16384

一种神奇的编码

pypi python implementation wheel license action

使用

  • 编码/解码文本
>>> import pybase16384 as pybs
>>> pybs.encode_string('hello!!')
'栙擆羼漡'
>>> pybs.decode_string('栙擆羼漡')
'hello!!'
  • 编码文件
from io import BytesIO

import pybase16384 as pybs

with open("input.pcm", "rb") as f:
    data = f.read()
for i in range(1):
    pybs.encode_file(BytesIO(data), open("output2.pcm", 'wb'), True)
  • 解码文件
from io import BytesIO

import pybase16384 as pybs

with open("output2.pcm", "rb") as f:
    data = f.read()
for i in range(1):
    pybs.decode_file(BytesIO(data), open("input2.pcm", 'wb'))

公开函数

from typing import IO

def encode_len(dlen: int) -> int: ...

def decode_len(dlen: int, offset: int) -> int: ...

ENCBUFSZ: int
DECBUFSZ: int
FLAG_NOHEADER: int
FLAG_SUM_CHECK_ON_REMAIN: int
FLAG_DO_SUM_CHECK_FORCELY: int

def is_64bits() -> bool: ...

def encode_file(input: IO, output: IO, write_head: bool = ..., buf_rate: int = ...): ...

def encode_file_safe(input: IO, output: IO, write_head: bool = ..., buf_rate: int = ...): ...

def decode_file(input: IO, output: IO, buf_rate: int = ...): ...

def decode_file_safe(input: IO, output: IO, buf_rate: int = ...): ...

def ensure_bytes(inp) -> bytes: ...

def encode_local_file(inp, out) -> None: ...

def decode_local_file(inp, out) -> None: ...

def encode_fd(inp: int, out: int) -> None: ...

def decode_fd(inp: int, out: int) -> None: ...

def encode_local_file_detailed(inp, out, flag: int) -> None: ...

def decode_local_file_detailed(inp, out, flag: int) -> None: ...

def encode_fd_detailed(inp: int, out: int, flag: int) -> None: ...

def decode_fd_detailed(inp: int, out: int, flag: int) -> None: ...

def encode(data: bytes) -> bytes: ...

def encode_safe(data: bytes) -> bytes: ...

def decode(data: bytes) -> bytes: ...

def decode_safe(data: bytes) -> bytes: ...

def encode_from_string(data: str, write_head: bool = ...) -> bytes: ...

def encode_from_string_safe(data: str, write_head: bool = ...) -> bytes: ...

def encode_to_string(data: bytes) -> str: ...

def encode_to_string_safe(data: bytes) -> str: ...

def encode_string(data: str) -> str: ...

def encode_string_safe(data: str) -> str: ...

def decode_from_bytes(data: bytes) -> str: ...

def decode_from_bytes_safe(data: bytes) -> str: ...

def decode_from_string(data: str) -> bytes: ...

def decode_from_string_safe(data: str) -> bytes: ...

def decode_string(data: str) -> str: ...

def decode_string_safe(data: str) -> str: ...
  • write_head将显式指明编码出的文本格式(utf16be),以便文本编辑器(如记事本)能够正确渲染,一般在写入文件时使用。

  • buf_rate指定读取文件的策略。当它为n时,则表示一次读取7n或者8n个字节。如果读到的字节长度小于预期,则说明长度不够, 此时,n将减半,恢复文件指针,重新读取。如果当n=1时长度仍然不够,就地encode/decode处理之。

  • encode_lendecode_len用于计算输出的长度

内部函数

  • 他们直接来自底层的C库,高性能,但是一般不需要在外部使用(除非是增加性能)
def _encode(data: BufferProtocol) -> bytes: ...

def _encode_safe(data: BufferProtocol) -> bytes: ...

def _decode(data: BufferProtocol) -> bytes: ...

def _decode_safe(data: BufferProtocol) -> bytes: ...

def _encode_into(data: BufferProtocol, dest: BufferProtocol) -> int: ...

def _encode_into_safe(data: BufferProtocol, dest: BufferProtocol) -> int: ...

def _decode_into(data: BufferProtocol, dest: BufferProtocol) -> int: ...

def _decode_into_safe(data: BufferProtocol, dest: BufferProtocol) -> int: ...

def is_64bits() -> bool: ...
  • _decode在解码b'='开头的数据时不安全解释器异常
  • _encode_into_decode_into直接操作缓冲区对象的底层指针,0拷贝,当然也和上面一样的问题,他们是没有检查的

✨ v0.3更新 ✨

融合了 CFFI 版本的成果,现在一个包可以同时在cpython和pypy上运行

本机编译

python -m pip install setuptools wheel cython cffi
git clone https://github.com/synodriver/pybase16384
cd pybase16384
git submodule update --init --recursive
python setup.py bdist_wheel --use-cython --use-cffi
  • 为了在windows上编译,需要加点料,把 这个 放进msvc的目录

后端选择

默认由py实现决定,在cpython上自动选择cython后端,在pypy上自动选择cffi后端,使用B14_USE_CFFI环境变量可以强制选择cffi

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pybase16384-0.3.7-pp310-pypy310_pp73-win_amd64.whl (301.6 kB view details)

Uploaded PyPy Windows x86-64

pybase16384-0.3.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (336.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pybase16384-0.3.7-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (331.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pybase16384-0.3.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl (298.2 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

pybase16384-0.3.7-pp310-pypy310_pp73-macosx_10_9_x86_64.whl (304.2 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pybase16384-0.3.7-pp39-pypy39_pp73-win_amd64.whl (301.4 kB view details)

Uploaded PyPy Windows x86-64

pybase16384-0.3.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (336.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pybase16384-0.3.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (331.9 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pybase16384-0.3.7-pp39-pypy39_pp73-macosx_11_0_arm64.whl (298.1 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

pybase16384-0.3.7-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (304.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pybase16384-0.3.7-pp38-pypy38_pp73-win_amd64.whl (301.3 kB view details)

Uploaded PyPy Windows x86-64

pybase16384-0.3.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (336.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pybase16384-0.3.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (331.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pybase16384-0.3.7-pp38-pypy38_pp73-macosx_11_0_arm64.whl (298.4 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

pybase16384-0.3.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (304.2 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

pybase16384-0.3.7-cp312-cp312-win_amd64.whl (313.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

pybase16384-0.3.7-cp312-cp312-win32.whl (301.8 kB view details)

Uploaded CPython 3.12 Windows x86

pybase16384-0.3.7-cp312-cp312-musllinux_1_1_x86_64.whl (352.7 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pybase16384-0.3.7-cp312-cp312-musllinux_1_1_aarch64.whl (344.4 kB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ ARM64

pybase16384-0.3.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (347.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pybase16384-0.3.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (340.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pybase16384-0.3.7-cp312-cp312-macosx_11_0_arm64.whl (311.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pybase16384-0.3.7-cp312-cp312-macosx_10_9_x86_64.whl (322.4 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pybase16384-0.3.7-cp312-cp312-macosx_10_9_universal2.whl (432.6 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

pybase16384-0.3.7-cp311-cp311-win_amd64.whl (311.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

pybase16384-0.3.7-cp311-cp311-win32.whl (301.3 kB view details)

Uploaded CPython 3.11 Windows x86

pybase16384-0.3.7-cp311-cp311-musllinux_1_1_x86_64.whl (355.5 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pybase16384-0.3.7-cp311-cp311-musllinux_1_1_aarch64.whl (347.7 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ ARM64

pybase16384-0.3.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (352.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pybase16384-0.3.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (343.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pybase16384-0.3.7-cp311-cp311-macosx_11_0_arm64.whl (310.4 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pybase16384-0.3.7-cp311-cp311-macosx_10_9_x86_64.whl (319.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pybase16384-0.3.7-cp311-cp311-macosx_10_9_universal2.whl (428.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

pybase16384-0.3.7-cp310-cp310-win_amd64.whl (311.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

pybase16384-0.3.7-cp310-cp310-win32.whl (300.8 kB view details)

Uploaded CPython 3.10 Windows x86

pybase16384-0.3.7-cp310-cp310-musllinux_1_1_x86_64.whl (355.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pybase16384-0.3.7-cp310-cp310-musllinux_1_1_aarch64.whl (348.7 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ ARM64

pybase16384-0.3.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (352.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pybase16384-0.3.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (343.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pybase16384-0.3.7-cp310-cp310-macosx_11_0_arm64.whl (310.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pybase16384-0.3.7-cp310-cp310-macosx_10_9_x86_64.whl (319.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pybase16384-0.3.7-cp310-cp310-macosx_10_9_universal2.whl (427.6 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pybase16384-0.3.7-cp39-cp39-win_amd64.whl (311.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

pybase16384-0.3.7-cp39-cp39-win32.whl (301.3 kB view details)

Uploaded CPython 3.9 Windows x86

pybase16384-0.3.7-cp39-cp39-musllinux_1_1_x86_64.whl (357.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pybase16384-0.3.7-cp39-cp39-musllinux_1_1_aarch64.whl (348.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ ARM64

pybase16384-0.3.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (352.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pybase16384-0.3.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (344.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pybase16384-0.3.7-cp39-cp39-macosx_11_0_arm64.whl (310.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pybase16384-0.3.7-cp39-cp39-macosx_10_9_x86_64.whl (319.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pybase16384-0.3.7-cp39-cp39-macosx_10_9_universal2.whl (428.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pybase16384-0.3.7-cp38-cp38-win_amd64.whl (312.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

pybase16384-0.3.7-cp38-cp38-win32.whl (301.5 kB view details)

Uploaded CPython 3.8 Windows x86

pybase16384-0.3.7-cp38-cp38-musllinux_1_1_x86_64.whl (355.9 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pybase16384-0.3.7-cp38-cp38-musllinux_1_1_aarch64.whl (348.3 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ ARM64

pybase16384-0.3.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (352.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pybase16384-0.3.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (344.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pybase16384-0.3.7-cp38-cp38-macosx_11_0_arm64.whl (310.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pybase16384-0.3.7-cp38-cp38-macosx_10_9_x86_64.whl (319.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pybase16384-0.3.7-cp38-cp38-macosx_10_9_universal2.whl (428.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file pybase16384-0.3.7-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6b72f167956fe203ba45c9da1edd1306342c62eaef8e00fefe7f80cd40b87b3a
MD5 894ec2fbb8a79447d95444942da2e314
BLAKE2b-256 75fde45490dd5118b2a11933f00373696eca509c37b4004e90c726ad7806c32d

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de4b513782e3369a486c53a0facbb97e945964ec5f034e222600aab03761ecb9
MD5 14ad515a092c98ad02737b5ec0a16f02
BLAKE2b-256 cee85c92eb72051fdafe6d829b4ea7240e0669697dcf03227c0b3e658d07bf11

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 97ccf10e2d0af50584c36338422398afc483714fccc7f961b2862677f9d7df05
MD5 7486b61e9a2e5e370df8ab6940a47643
BLAKE2b-256 42f512d4c3486e694932eb29cdcf75ac7646e1f46d2bb8a7b9d47705e7721eec

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cfa3f4ed8d1ee90bf548661b7db245b00e6243b7642c999bfb566aa6cf53ee6e
MD5 f141eadd304018b6e5a9aff19633a3ba
BLAKE2b-256 4e89ddd4fb0cc15e460bc6aa75357d75dc4035f4908b76965e479fc0c88a416a

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-pp310-pypy310_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-pp310-pypy310_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4b53f133fbbc2924de5307efef5dfcc3916a65df95123ff2c764a1756bfd921a
MD5 ca48931bc1943815676ee3c58a0282b4
BLAKE2b-256 c05a75a907130a826d7efe2a99996bd14b3bcf2fb98eb598faffe072cf87c6ac

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 bc8848186241fc83065b963caaa082febe95cd6f27ad7890dd0f3c005a2d2cab
MD5 a9afcb45d3cfb0adb8957222ea67c24a
BLAKE2b-256 176fba65ce803626ca57dbf86484e1ef070d0496c3b595b76b291823e58a9deb

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b373c09da0d076a5c9924befcffdfc3e8c335a669645d5ae89f670b8dfef28c5
MD5 a137c892718ea629355ecc307f37acf6
BLAKE2b-256 6da5799131159990a936c59d9c17e13e67134541d056e2aefc4a5bae0e9021e6

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fba44c81c8f2827b65b74de82af80e6dc8438e224f3bc59a8723b4e9d92ed4c6
MD5 552aeaa5cc094e7b46a00beafbfb4700
BLAKE2b-256 325089d34e3e347f27231489d938080eaddfb1ecf1adcad04a4cbe37429d563d

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5538d3e8592fbcdc516dd8e158ab9264f27e712e11d63e2a8a78ae90460109bd
MD5 0551bbb807a6e145270cef5892b4575e
BLAKE2b-256 c3c1dc1e4d06765ba21820608630af399d5d80adc26109b624a5f98938b8afcc

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 42edfae3584c6b278539e132806613a0c9263b6d654884e3d915b1b9d28e0a2a
MD5 4f20bb2d835cc96bcdd47735b3f34cb8
BLAKE2b-256 ad5fa4f128e67a45d2b7818d6bb95874170e1fd42229bcd10b9138a9a41621a0

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 82e923485031db97f631e1fa7e93056b327bc0fed563540abf70e34973c783bb
MD5 8d1692b048d5d6d63cb145b219ab80a4
BLAKE2b-256 609194321549f768afa3ccbfe210760368d588a9f66b174799471eb1d13fe0f4

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 030287865faa81d9292cc29115ac0f96526eaa819c405a8f3fe13fac5e734c7c
MD5 7006c0dfe11a8df27179754e8161285a
BLAKE2b-256 2ba67af92b351ad32ba21c36fb397a1966409d0da1f025f65c6adda371ad85d8

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8d16d7473f67066303b33687815955d949d7063bbd472cb6f389bc96705e4ce7
MD5 c90101ad2df28e75a5912a0dd47a9562
BLAKE2b-256 321164609f06acb76de11222a2679aede9a208ea625176896ab71287bff726d9

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3cfb61bcdaead492f650c2402d0f869fff7c27124fce06c2349b58b56f04388a
MD5 770655e0d550db937818264d681f5c0c
BLAKE2b-256 7efaa9ef82b2659e4a57c5736458015c005da2f54d215d80d5d7a8796b8e1a7b

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7c352194475491848c4aa79b7aa00d5a3f1bea430c4942c0fd90a4da4738db64
MD5 fe95998c1ac56f27b20d867387504fc2
BLAKE2b-256 92780f6cd6f0da55de504192396ecab1fd2a3fad50f13391ede3d20b232278ba

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3a2bbdfc48515cdb45c4720ffcb63d9e85ae2c80831601b4945601c007739217
MD5 09f5bc96314e79fdd4090b9c22288f87
BLAKE2b-256 7d4dda51bfe2b30bd5220c5d2909564abf4f374879851f31d715c6cf408e17f1

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp312-cp312-win32.whl.

File metadata

  • Download URL: pybase16384-0.3.7-cp312-cp312-win32.whl
  • Upload date:
  • Size: 301.8 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.11

File hashes

Hashes for pybase16384-0.3.7-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 fa8e76a7f3b6a4e7e640c2d554b5c8cb9255aec5c8914e3716794548bfc6fcd7
MD5 4360ab87548864e6c912185bd0357599
BLAKE2b-256 012b51a0830acbd18d38d08bc36d4079b2397130a2766cc8ffb5d8bf0ce0c977

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f2bf6782714c702044e245090871b760690e19f0d261f2a10b63834e67108f21
MD5 75e66376cbd059b67ccc6f2569e8c0d9
BLAKE2b-256 9547a4e38a3675a37ea57ce910b6321f3975528b794034b88b9632e65fd1fb02

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp312-cp312-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp312-cp312-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 e98eea0d5418bf1825476b1feacc3fa15206f7dc70c26b5ca1c008a8c257b5ae
MD5 ede207590f99704370b9c55fca64e606
BLAKE2b-256 bb311c59bcd4190f19d519502c4dd4d1bde525cbea98376f5883765aa6ae6028

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 96d9dea1dabb22d591713b66d3e9d68f2515241aa088e77b0af1f84673a4e645
MD5 36723f4d03dc994ab0763715d33811cc
BLAKE2b-256 5f9e3aeeb4ce3d5ae0ee78fb293c9624b5d3ee03839ddff57de755364724c40d

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bebd0f4a2a244650702a7a9a14f4160f8ad4f344516bfbea0e66549be871e92d
MD5 1577efad620efa1afb95672d8ba28fff
BLAKE2b-256 c226377496b5468b17c7f78db280af0fa4f443ffdf124af283dc8e7033b2fbb1

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e875476866965ffe8c5251b4fca30bc0b4875fb541f1456c60661ff55dbc0fd7
MD5 0a6d6da945c3beefc0cd05ec26788b9f
BLAKE2b-256 62846c3bac11d92d44a1b8ee21b3f859eb64a4b7a3e3fb375a54e8fc13a92872

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6427a9bf3330d1ac5ec5d29d4941d6f62d6f75b37b7649a69b2123933c4c2019
MD5 ccbdbf0e1ecc5c3fc131c5884e0b75f6
BLAKE2b-256 c796b03cce65534b42fd4b544b4469ff04621e907ce4b4a35818eb16de44847d

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ed565e3d3a8456a113a7dee9d0d0b9a1676fa0bcc6bf4f62ab29218d862c9731
MD5 b455de85c883a47022411610098eb455
BLAKE2b-256 a18f9078dc67fcea788a94b993e57979b41a0977b32d079d1e8f6fc40c95a5d4

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d059bb5b673ed08e249957b0dcbf263ae7fc6af2ecd415bc0207762d67794c9c
MD5 0f0f951567c9ddd380c230ecf62ccc9c
BLAKE2b-256 0dca937f5e34af0f3007059b77da0242aae9e40507fbe2291c76e7e77c1ea6fb

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp311-cp311-win32.whl.

File metadata

  • Download URL: pybase16384-0.3.7-cp311-cp311-win32.whl
  • Upload date:
  • Size: 301.3 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.11

File hashes

Hashes for pybase16384-0.3.7-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 cbc561d144ff1917aee603d65a89e77b5ee0b15aa426a60d45765f22e7ae28c1
MD5 045a6ae309011db1ff8b2f34c284bc18
BLAKE2b-256 6e75549119206a3f013ffbe427b20cc32ec45b62dec2d8304afdab7a3bcbffe3

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e88aae8b650137ca8caced7ab7f4dc817da6a417a626ff2370b0123a0cc90629
MD5 2a0306f157ef19da9eee94532051b777
BLAKE2b-256 70ac976aca1fb492d7bce633123580eb286892824a3ef5ed62fa361175975ce5

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp311-cp311-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp311-cp311-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 745904e360e120fd188afd719f60c3d9c7d9c5cc468f44f18de7a54c9a3468e1
MD5 7a241125a3da74cf279f9188b800d8f3
BLAKE2b-256 1d2286f3c8364e0044930026bf296cb12254374066724596facc33c20f79cc02

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c5cab295f49b54309d04b7327f8f3b3b76806ebe03071f64701d1bad11092305
MD5 79567642237ec9c0da1523ac7b736b32
BLAKE2b-256 186085fb4752558d320f3dd1f4ac40c7904c86ca94f643b9cc3a9fcb2a986305

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7d806ac4b6853448322649bbe9675e77db343c4a78b82255a4e06527ff2f038d
MD5 d27e0446c73c0d7f9e5897abddb43767
BLAKE2b-256 6ad98f262333f9b290172fdf43c308dac3ee9bd2df143d601bc7b54ca0cac456

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5d5bb2f4cdbaaedb8abf2389e932c583aa7817bd2adecd3e1c1a8e2d3b78421a
MD5 01716f2331a5227eabaf5a79d6027c7d
BLAKE2b-256 cb35e927378dd0727949adbc75af0f91201e023b7717373bb2234d6237c9f511

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d4ab031dc9123678642f758413d36a2de87fe0e3710fddff8fc98b8f0c7d7509
MD5 c6422e0a7f07fc51e250b532cc033194
BLAKE2b-256 4964f188f4cdc8ba108f159c0ceedee4bd0bd67b9e314d7000d25125837bdb35

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 184ddb3dae1951b0ebc4dc5296ce3e4953c34658a9eadfbcd14c9411a53d58c0
MD5 bd3662af82139bab8f016e8562809594
BLAKE2b-256 1d3f165f68fe79e1bf1d578713a9218a00cee6fdd5ee37f23812d61207c08ebe

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b1f5758f73b828524e4d5d235d59e6d22ccc7a2596d285492f0087e724c61385
MD5 8cc9825d964faf76ae17dbba27306353
BLAKE2b-256 b1275eb1ed6f7ccc90381ac952396a054bea1b46561bd145d8b8954e4bca8f78

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp310-cp310-win32.whl.

File metadata

  • Download URL: pybase16384-0.3.7-cp310-cp310-win32.whl
  • Upload date:
  • Size: 300.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.11

File hashes

Hashes for pybase16384-0.3.7-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 0ccd0128687c08ce8b0123596e5de818c20d3e29ec9a88f7b68abb1504cfd4fc
MD5 f60d22ce803d6cbb841c43259d57d9f9
BLAKE2b-256 ebfd483c0eee17ec390299adb82ebe566a9a561c74b80bc2bf9c9140eb0b5a0a

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a5898a4f0060d7ab2d41eb0e6e4c9d79df6cc80365e3904f90122d9ab2913311
MD5 cf49a939f2ffbca5adb457722eef88d6
BLAKE2b-256 3373b9e8ab4bfb72e8ed18fd8cbe9769589929b01c8634f4b4d3a994204e2783

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp310-cp310-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp310-cp310-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 9b9c42e83a7dce7a935039387ef497b0c662b1f014c063c63c4962233559c26f
MD5 76987da93e4b26d38a6399828ad71baa
BLAKE2b-256 59cc01a9081389a3ff6b1015cc156b7d6f1a4c1a5c3eb82eef20fc61d791fc2b

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d5fe756fcffc108c2ae9f649abfa7f95ee3e3ff0c2bd5b198d864e4f54246183
MD5 dc1cc62053751b55665e18cadd51316d
BLAKE2b-256 e316061d46e7da9b222ba370fc87497d6f212dc39124fb4c4461788ff70e250e

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6b072cc87b0b030a0705f52a7a1bb57bf22fdb2d78d9c2855680a6c1d28b8b5d
MD5 cb74e878060088532096c2b03238f843
BLAKE2b-256 8a65be0c62500a40dee3dbce8dd12e418df822fb0831642f78f47d5dd2107434

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c52097581878f97afb59aa7a15099b97c0cf1c01d169f94574798d10f0050165
MD5 917b173a94b044add4949c141b836492
BLAKE2b-256 1b2b47305a02feb621dc23db36a1b93ce200e26156f1cbede8cdc98351afdb91

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4cf98208b389f785f281b9fa88bc460ab81654af5db178f2fb47245bf0233863
MD5 b33bb2d0de94011512e0c7dc73959658
BLAKE2b-256 0cbf5934a5ec354c46f71f5de0bb078b17b9f8ce4e14ec2c182f5443ffd59126

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 93522f6baced9423398820ccb658d09c237c8422a1add4a8acde46668f6e8386
MD5 96e036610270d9bfc894d8028f26d401
BLAKE2b-256 23cb28980341b0f0f4077d6295e130c3dcaba42efc685d0eca125ed264bf7d6a

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3b06c875dce3b618f19d7c621fc64e7ab1d761ae1b83104b8ea601b3942a530e
MD5 b3449bb7345d736dc4737c605ae044a3
BLAKE2b-256 35f23b433baa689949b1531bdd2fc80731f49c9afb81240f3b4957f87248cd56

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp39-cp39-win32.whl.

File metadata

  • Download URL: pybase16384-0.3.7-cp39-cp39-win32.whl
  • Upload date:
  • Size: 301.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.11

File hashes

Hashes for pybase16384-0.3.7-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 aed40413d74138017fc739d1bd4971c744f459bab7dcd751c409755d87a57ea0
MD5 e91a61b72867e55d210b3fb255e1d9af
BLAKE2b-256 37956b720df9fb0f2bc2fba7e29d8e80a81d0fe1c4f76852df74c59109e26118

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 81a2cdd074a26c2b1c03f86404a34f214057f0bee25c297752886d84dca7f49e
MD5 6760439ff922298d1031e1c38f626b0b
BLAKE2b-256 81ece684f203da68fe33c0b0deea41fdf8d5480961534af2807b16653a19c93c

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp39-cp39-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp39-cp39-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 9cff0c0db0755cf5f61f71f7008f97b490f9d99a488ad5c936a2edd0428d2dd0
MD5 fce9f75952c75c8efe1099877b0239b5
BLAKE2b-256 6ac46661db92218966c4c6aad728ca6be47f9540ed3a73e2b384ce2ff91a2ce7

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df17de009ff04f0325d7cb3bde32075d29058bebd2a6891afc7cef00dfb4be92
MD5 4ff751db12e32b8601c0a174b2424931
BLAKE2b-256 6453259aface21bb7d82daded70ed646283a0a4186acc897564d29acdd38b11c

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5d55af3deeabee17fdf6bcb42303c9c6a55a180a08dc0a8d70791bca734d91ae
MD5 a60eafd9d764f9d9342ced384a83a22e
BLAKE2b-256 95ce0a2c9da445da62057c809b0ab08b862cda8b6623e1fde218e9d4c30432a3

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 70d905f72565b9cb71cb59ff1de4b7a574faa79f638e9add19eb1713fa03dac3
MD5 1d474125b84f37ac9dd2a5341bd0507e
BLAKE2b-256 1dd3284a133684353204f0de89237beee06b70c809b60c74e1361178e3f9bd14

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4ad84c4547434da503008a0407f8c1311916ad74f45eaeb4d509c99512073295
MD5 c52dcec9246e350922132f1fc923e758
BLAKE2b-256 37c3773a657001b723f9ab3014cb6ea8f257fc8a3a51efc024569478a924f0ca

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 11c7bf75b618f5296600aa1529c0bff16c9b73df6109bc65ca8b534a8bdafca5
MD5 2b61311247efc935818b8551b047df30
BLAKE2b-256 7f75fd8faf3548e85f6150a97299fe851913b6f9acdb8c3fa2dcaa2e18b86660

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 23d4c09ffbcfaab180add97cf6b6949c43fac3bb0039f22676072875d74efe8d
MD5 7959f2fd9bfa42af2f0666de7cfb6f8c
BLAKE2b-256 ae3a9a83d5df5d494fc7f3df8c30a183f785a8c85a4c07c6a87f4285cd7714af

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp38-cp38-win32.whl.

File metadata

  • Download URL: pybase16384-0.3.7-cp38-cp38-win32.whl
  • Upload date:
  • Size: 301.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.11

File hashes

Hashes for pybase16384-0.3.7-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 99151f31d03e4c525c3f5b254c068a4c47af48ea44eff7688d706189d4d7d5f3
MD5 7cafd253fd6b4884722b199a23826b31
BLAKE2b-256 09256fb32a28ed56e61eb0dcd2e7981ca039ab5f369c50e3ddb92f3be65c1cb1

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cbeb3ae507c1e799b0b274fef4f6f205f3486ac633fa0eeba5d9a8318b5c35d7
MD5 538c200df55e38f255221272f22dfddf
BLAKE2b-256 0a54a6ecda47d6f9c42a54f05a30028dc38a290d30aa80850978328eba8f7ee6

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp38-cp38-musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp38-cp38-musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 ce0b4c7867f82e621d2b21c6dd86270df134e0ebc77472cbe456e8156eb5cbe5
MD5 6807a187a2a7eab3bb3137e199983ad7
BLAKE2b-256 7af948ab05163b86d3e06d0b74e7fe5d593c796610710714e4d2816b510fcf52

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 711f6a64e815a67bfcd7b104e0dd95181769d014d0e639852ac4b3a128258fa1
MD5 b37d67ad34c90818f671bc6ccde40975
BLAKE2b-256 d8bbb4c0fec0c1606115242a53c9e269f1cb664653cb925f4d7b68aa4b8518e8

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7611a1b93e019357687a5ad25e10385d2ec00bd16847382381399a044d402f9b
MD5 a59ea8b4e5f50e3d23fa2b3297455534
BLAKE2b-256 9c6d86f6478137b8c095feeab3fd6a217d792c3fbf8e7acb5afa58ebbb3670bb

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bfe6ba182363f48b6972721de4e551f8a8a3f0db0ba748df9c8bfd497ba63643
MD5 0aad428bfdb7a80530994a71622beb9b
BLAKE2b-256 cf9da6a4d767f02f8c6c2bccdad45dbb062ae5f4c3b943ae9e5d55de72f00ca7

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d6481b81cbc753eaeffdd6e7387385f8a8bc691152f90c03d5f6936513c508f9
MD5 1c2900fab310e938dc3288ee3f9678bf
BLAKE2b-256 d928310e1c9adc5b4cd730de9e332e500821658d8b2aa41b0d71deaceefb4586

See more details on using hashes here.

File details

Details for the file pybase16384-0.3.7-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pybase16384-0.3.7-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1f141939d681e46268cefb516cb95f2717258db1ba30d01d315b0126d33cad1d
MD5 3d61acfa60ab1ea45aa040792a4f8c91
BLAKE2b-256 e033782525384e41e57d4bdfcf51e1afda46403cfd60356aefde11282fe7e77f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page