Skip to main content

Fast and accurate epidemiological parameter estimation from phylogenetic trees with the Birth-Death Exposed-Infectious (BDEI) model.

Project description

PyBDEI

Tools for fast and accurate maximum likelihood estimation of Birth-Death Exposed-Infectious (BDEI) epidemiological model parameters from phylogenetic trees.

The birth-death exposed-infectious (BDEI) model [Stadler et al. 2014] describes the transmission of pathogens that feature an incubation period (when the host is already infected but not yet infectious), for example Ebola or SARS-CoV-2. In a phylodynamics framework, it allows to infer such epidemiological parameters as the basic reproduction number R0, incubation period and infectious time from a phylogenetic tree (a genealogy of pathogen sequences).

This implementation of the BDEI model solves the computational bottlenecks (due to high complexity of differential equations used in phylodynamics models, previous implementations [Stadler and Bonhoeffer 2013 and Barido-Sottani et al. 2018 ] sometimes suffered from numerical instability and were only applicable to medium datasets of <500 samples). Our fast and accurate estimator is applicable to very large datasets (10, 000 samples) allowing phylodynamics to catch up with pathogen sequencing efforts.

DOI:10.1093/sysbio/syad059 GitHub release PyPI version PyPI downloads Docker pulls

Article

A Zhukova, F Hecht, Y Maday, and O Gascuel. Fast and Accurate Maximum-Likelihood Estimation of Multi-Type Birth-Death Epidemiological Models from Phylogenetic Trees Syst Biol. 2023 Sep 13:syad059. doi: 10.1093/sysbio/syad059

Input data

As an input, one needs to provide a rooted phylogenetical tree in newick format, and the value of one of the model parameters (for identifiability):

  • µ – becoming infectious rate corresponding to a state transition from E (exposed) to I (infectious) (can be fixed via the --mu argument),
  • λ – transmission rate, from a transmitter in the state I to a newly infected recipient, whose state is E (can be fixed via the --la argument),
  • ψ – removal rate, corresponding to individuals in the state I exiting the study (e.g. due to healing, death or starting a treatment) (can be fixed via the --psi argument),
  • ρ – sampling probability (upon removal) (can be fixed via the --p argument).

Installation

There are 4 alternative ways to run PyBDEI on your computer: with docker, singularity, in Python3 (only on linux systems), or via command line (only on linux systems, requires installation with Python3).

Run with docker

Basic usage

Once docker is installed, run the following command (here we assume that the sampling probability value is known and fixed to 0.3):

docker run -v <path_to_the_folder_containing_the_tree>:/data:rw -t evolbioinfo/bdei --nwk /data/<tree_file.nwk> --p 0.3 --CI_repetitions 100 --log <file_to_store_the_estimated_parameters.tab>

This will produce a file <file_to_store_the_estimated_parameters.tab> in the <path_to_the_folder_containing_the_tree> folder, containing a tab-separated table with the estimated parameter values and their CIs (can be viewed with a text editor, Excel or Libre Office Calc).

Help

To see advanced options, run

docker run -t evolbioinfo/bdei -h

Run with singularity

Basic usage

Once singularity is installed, run the following command
(here we assume that the sampling probability value is known and fixed to 0.3):

singularity run docker://evolbioinfo/bdei --nwk <path/to/tree_file.nwk> --p 0.3 --CI_repetitions 100 --log <path/to/file_to_store_the_estimated_parameters.tab>

This will produce a file <path/to/file_to_store_the_estimated_parameters.tab>, containing a tab-separated table with the estimated parameter values and their CIs (can be viewed with a text editor, Excel or Libre Office Calc).

Help

To see advanced options, run

singularity run docker://evolbioinfo/bdei -h

Run in python3 or command-line (for linux systems, recommended Ubuntu 21 or newer versions)

1. Install the C++ dependencies

You would need to install g++ and NLOpt C++ libraries:

sudo apt update --fix-missing 
sudo apt install -y g++ libnlopt-cxx-dev

2. Install python 3

You could either install python (version 3.9 or higher) system-wide:

sudo apt install -y python3 python3-pip python3-setuptools python3-distutils

or alternatively, you could install python (version 3.9 or higher) via conda (make sure that conda is installed first). Here we will create a conda environment called pybdeienv:

conda create --name pybdeienv python=3.9
conda activate pybdeienv
pip3 install setuptools

3. Install numpy and PyBDEI

pip3 install numpy 
pip3 install pybdei

Basic usage in a command line

If you installed PyBDEI via conda, do not forget to first activate the dedicated environment (here named pybdeienv), e.g.

conda activate pybdeienv

To run PyBDEI (here we assume that the sampling probability value is known and fixed to 0.3):

bdei_infer --nwk <path/to/tree_file.nwk> --p 0.3 --CI_repetitions 100 --log <path/to/file_to_store_the_estimated_parameters.tab>

This will produce a file <path/to/file_to_store_the_estimated_parameters.tab>, containing a tab-separated table with the estimated parameter values and their CIs (can be viewed with a text editor, Excel or Libre Office Calc).

Help

To see advanced options, run:

bdei_infer -h

Basic usage in python3

from pybdei import infer
# Path to the tree in newick format
tree = "tree.nwk"
result, time = infer(nwk=tree, p=0.3, CI_repetitions=100)
print('Inferred transition rate is', result.mu, result.mu_CI)
print('Inferred transmission rate is', result.la, result.la_CI)
print('Inferred removal rate is', result.psi, result.psi_CI)
print('Inferred reproductive number is', result.R_naught)
print('Inferred incubation period is', result.incubation_period)
print('Inferred infectious time is', result.infectious_time)
print('Converged in', time.CPU_time, 's and', time.iterations, 'iterations')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pybdei-0.13.tar.gz (41.1 kB view details)

Uploaded Source

File details

Details for the file pybdei-0.13.tar.gz.

File metadata

  • Download URL: pybdei-0.13.tar.gz
  • Upload date:
  • Size: 41.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.12

File hashes

Hashes for pybdei-0.13.tar.gz
Algorithm Hash digest
SHA256 4fcd3950aa60a25538bb8716a88ed5d5b24f63b1deebf1828e2e0ea9ac45441f
MD5 8a4368be141d009236e220131a0f3e3e
BLAKE2b-256 97e1e230d11f2558ab7a3e712de5fff24faf559d568cb0a106dd631d350954fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page