Skip to main content

A Python package for locating the dune toe on cross-shore beach profile transects.

Project description

Project Status: Active – The project has reached a stable, usable state and is being actively developed. License: MIT Build Status Documentation Status Coverage Status

pybeach: A Python package for locating the dune toe on cross-shore beach profile transects.

pybeach-example

Background

pybeach is a python package for identifying dune toes on 2D beach profile transects. It includes the following methods:

  • Machine learning;
  • Maximum curvature (Stockdon et al, 2007);
  • Relative relief (Wernette et al, 2016); and,
  • Perpendicular distance.

In addition, pybeach contains methods for identifying the shoreline position and dune crest position on 2D beach profile transects. See the pybeach paper for more details about pybeach.

Usage

from pybeach.beach import Profile

# example data
x = np.arange(0, 80, 0.5)
z = np.concatenate((np.linspace(4, 5, 40),
                    np.linspace(5, 2, 10),
                    np.linspace(2, 0, 91)[1:],
                    np.linspace(0, -1, 20)))

# instantiate
p = Profile(x, z)

# predict dune toe, dune crest, shoreline location
toe_ml, prob_ml = p.predict_dunetoe_ml('wave_embayed_clf')  # predict toe using machine learning model
toe_mc = p.predict_dunetoe_mc()    # predict toe using maximum curvature method (Stockdon et al, 2007)
toe_rr = p.predict_dunetoe_rr()    # predict toe using relative relief method (Wernette et al, 2016)
toe_pd = p.predict_dunetoe_pd()    # predict toe using perpendicular distance method
crest = p.predict_dunecrest()      # predict dune crest
shoreline = p.predict_shoreline()  # predict shoreline

See the example notebook for more details.

Documentation

Read the pybeach documentation here.

Questions, Comments, Suggestions

Do you have a question that needs answering? Have you found an issue with the code and need to get it fixed? Or perhaps you're looking to contribute to the code and have ideas for how it could be improved. In all cases, please see the Issues page.

References

Stockdon, H. F., Sallenger Jr, A. H., Holman, R. A., & Howd, P. A. (2007). A simple model for the spatially-variable coastal response to hurricanes. Marine Geology, 238, 1-20. https://doi.org/10.1016/j.margeo.2006.11.004

Wernette, P., Houser, C., & Bishop, M. P. (2016). An automated approach for extracting Barrier Island morphology from digital elevation models. Geomorphology, 262, 1-7. https://doi.org/10.1016/j.geomorph.2016.02.024

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pybeach-0.1.1.tar.gz (949.0 kB view hashes)

Uploaded Source

Built Distribution

pybeach-0.1.1-py3-none-any.whl (990.0 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page