Skip to main content

Official Python wrapper for BGSLibrary

Project description

BGSLibrary

A Background Subtraction Library

Release License: GPL v3 Platform: Windows, Linux, OS X OpenCV Wrapper: Python, MATLAB Algorithms

Last page update: 04/03/2023

Library Version: 3.3.0 (see Build Status and Release Notes for more info)

The BGSLibrary was developed in early 2012 by Andrews Sobral as a C++ framework (with wrappers available for Python, Java and MATLAB) for foreground-background separation in videos using OpenCV. The bgslibrary is compatible with OpenCV versions 2.4.x, 3.x and 4.x, and can be compiled on Windows, Linux, and Mac OS X. It currently contains 43 algorithms and is available free of charge to all users, both academic and commercial. The library's source code is available under the MIT license.

You can either install BGSLibrary via pre-built binary package or build it from source

Supported Compilers are:

GCC 4.8 and above
Clang 3.4 and above
MSVC 2015, 2017, 2019 or newer

Other compilers might work, but are not officially supported. The bgslibrary requires some features from the ISO C++ 2014 standard.

Algorithm compatibility across OpenCV versions


Algorithm OpenCV < 3.0 (42) 3.0 <= OpenCV <= 3.4.7 (41) 3.4.7 < OpenCV < 4.0 (39) OpenCV >= 4.0 (26)
AdaptiveBackgroundLearning :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
AdaptiveSelectiveBackgroundLearning :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
CodeBook :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
DPAdaptiveMedian :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :x:
DPEigenbackground :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :x:
DPGrimsonGMM :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :x:
DPMean :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :x:
DPPratiMediod :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :x:
DPTexture :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :x:
DPWrenGA :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :x:
DPZivkovicAGMM :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :x:
FrameDifference :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
FuzzyChoquetIntegral :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
FuzzySugenoIntegral :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
GMG :heavy_check_mark: :x: :x: :x:
IndependentMultimodal :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
KDE :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
KNN :x: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
LBAdaptiveSOM :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
LBFuzzyAdaptiveSOM :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
LBFuzzyGaussian :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
LBMixtureOfGaussians :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
LBP_MRF :heavy_check_mark: :heavy_check_mark: :x: :x:
LBSimpleGaussian :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
LOBSTER :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
MixtureOfGaussianV1 :heavy_check_mark: :x: :x: :x:
MixtureOfGaussianV2 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
MultiCue :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :x:
MultiLayer :heavy_check_mark: :heavy_check_mark: :x: :x:
PAWCS :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
PixelBasedAdaptiveSegmenter :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
SigmaDelta :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
StaticFrameDifference :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
SuBSENSE :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
T2FGMM_UM :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :x:
T2FGMM_UV :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :x:
T2FMRF_UM :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :x:
T2FMRF_UV :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :x:
TwoPoints :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
ViBe :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
VuMeter :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
WeightedMovingMean :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
WeightedMovingVariance :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

Stargazers over time

Stargazers over time

Citation

If you use this library for your publications, please cite it as:

@inproceedings{bgslibrary,
author    = {Sobral, Andrews},
title     = {{BGSLibrary}: An OpenCV C++ Background Subtraction Library},
booktitle = {IX Workshop de Visão Computacional (WVC'2013)},
address   = {Rio de Janeiro, Brazil},
year      = {2013},
month     = {Jun},
url       = {https://github.com/andrewssobral/bgslibrary}
}

A chapter about the BGSLibrary has been published in the handbook on Background Modeling and Foreground Detection for Video Surveillance.

@incollection{bgslibrarychapter,
author    = {Sobral, Andrews and Bouwmans, Thierry},
title     = {BGS Library: A Library Framework for Algorithm’s Evaluation in Foreground/Background Segmentation},
booktitle = {Background Modeling and Foreground Detection for Video Surveillance},
publisher = {CRC Press, Taylor and Francis Group.}
year      = {2014},
}

Download PDF:

  • Sobral, Andrews. BGSLibrary: An OpenCV C++ Background Subtraction Library. IX Workshop de Visão Computacional (WVC'2013), Rio de Janeiro, Brazil, Jun. 2013. (PDF in brazilian-portuguese containing an english abstract).

  • Sobral, Andrews; Bouwmans, Thierry. "BGS Library: A Library Framework for Algorithm’s Evaluation in Foreground/Background Segmentation". Chapter on the handbook "Background Modeling and Foreground Detection for Video Surveillance", CRC Press, Taylor and Francis Group, 2014. (PDF in english).

Some references

Some algorithms of the BGSLibrary were used successfully in the following papers:

  • (2014) Sobral, Andrews; Vacavant, Antoine. A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Computer Vision and Image Understanding (CVIU), 2014. (Online) (PDF)

  • (2013) Sobral, Andrews; Oliveira, Luciano; Schnitman, Leizer; Souza, Felippe. (Best Paper Award) Highway Traffic Congestion Classification Using Holistic Properties. In International Conference on Signal Processing, Pattern Recognition and Applications (SPPRA'2013), Innsbruck, Austria, Feb 2013. (Online) (PDF)

Videos

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pybgs-3.3.0.post2.tar.gz (1.0 MB view details)

Uploaded Source

File details

Details for the file pybgs-3.3.0.post2.tar.gz.

File metadata

  • Download URL: pybgs-3.3.0.post2.tar.gz
  • Upload date:
  • Size: 1.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for pybgs-3.3.0.post2.tar.gz
Algorithm Hash digest
SHA256 622f138224c7767f0860626c27013ccbb1119982515b7f9e05d3386107f454d1
MD5 b16957b061733e1b4cad7bea58890364
BLAKE2b-256 7019d1f42f1db8c2addbfb4b8648eca41e7b89c8fa5dbd3b57a8d0cbae9d99bb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page