This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (pypi.python.org).
Help us improve Python packaging - Donate today!

Client library to interface with multiple bloomd servers

Project Description
bloom-python-driver
=========

Pybloom provides a Python client library to interface with
bloomd servers. The library supports multiple bloomd servers,
and automatically handles filter discovery and sharding.

Features
--------


* Provides a simple API for using bloomd
* Allows for using multiple bloomd servers
- Auto-discovers filter locations
- Balance the creation of new filters
- Explicitly name the location to make filters
* Command pipelining to reduce latency


Install
-------

Download and install from source:

python setup.py install

Example
------

Using pybloom is very simple, and is similar to using native sets::

from pybloom import BloomdClient

# Create a client to a local bloomd server, default port
client = BloomdClient(["localhost"])

# Get or create the foobar filter
foobar = client.create_filter("foobar")

# Set a property and check it exists
foobar.add("Test Key!")
assert "Test Key!" in foobar

To support multiple servers, just add multiple servers::

from pybloom import BloomdClient

# Create a client to a multiple bloomd servers, default ports
client = BloomdClient(["bloomd1", "bloomd2"])

# Create 4 filters, should be on different machines
for x in xrange(4):
client.create_filter("test%d" % x)

# Show which servers the filters are on by
# specifying the inc_server flag
print client.list_filters(inc_server=True)

# Use the filters
client["test0"].add("Hi there!")
client["test1"].add("ZING!")
client["test2"].add("Chuck Testa!")
client["test3"].add("Not cool, bro.")


Using pipelining is straightforward as well::

from pybloom import BloomdClient

# Create a client to a local bloomd server, default port
client = BloomdClient(["localhost"])

# Get or create the foobar filter
pipe = client.create_filter("pipe").pipeline()

# Chain multiple add commands
results = pipe.add("foo").add("bar").add("baz").execute()
assert results[0]
assert results[1]
assert results[2]
Release History

Release History

This version
History Node

0.4.6

History Node

0.4.5

Download Files

Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
pybloomd-0.4.6.tar.gz (6.3 kB) Copy SHA256 Checksum SHA256 Source May 22, 2013

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting