multi backend cache
Project description
cache supporting multiple backends (memory, redis). Synchronization library based on aiocache.
This library aims for simplicity over specialization. All caches contain the same minimum interface which consists on the following functions:
add: Only adds key/value if key does not exist.
get: Retrieve value identified by key.
set: Sets key/value.
multi_get: Retrieves multiple key/values.
multi_set: Sets multiple key/values.
exists: Returns True if key exists False otherwise.
increment: Increment the value stored in the given key.
delete: Deletes key and returns number of deleted items.
clear: Clears the items stored.
raw: Executes the specified command using the underlying client.
Installing
pip install pycached
pip install pycached[redis]
pip install pycached[msgpack]
Usage
Using a cache is as simple as
>>> from from pycached import Cache
>>> cache = Cache(Cache.MEMORY) # Here you can also use Cache.REDIS and Cache.MEMCACHED, default is Cache.MEMORY
>>> cache.set('key', 'value')
True
>>> cache.get('key')
'value'
Or as a decorator
import time
from collections import namedtuple
from pycached import cached, Cache, RedisCache
from pycached.serializers import PickleSerializer
# With this we can store python objects in backends like Redis!
Result = namedtuple('Result', "content, status")
@cached(ttl=10, cache=RedisCache, key="key", serializer=PickleSerializer(), port=6379, namespace="main")
def cached_call():
print("Sleeping for three seconds zzzz.....")
time.sleep(3)
return Result("content", 200)
def run():
cached_call()
cached_call()
cached_call()
cache = Cache(Cache.REDIS, endpoint="127.0.0.1", port=6379, namespace="main")
cache.delete("key")
if __name__ == "__main__":
run()
The recommended approach to instantiate a new cache is using the Cache constructor. However you can also instantiate directly using pycached.RedisCache, pycached.SimpleMemoryCache.
You can also setup cache aliases so its easy to reuse configurations
from pycached import caches
# You can use either classes or strings for referencing classes
caches.set_config({
'default': {
'cache': "pycached.SimpleMemoryCache",
'serializer': {
'class': "pycached.serializers.StringSerializer"
}
},
'redis_alt': {
'cache': "pycached.RedisCache",
'endpoint': "127.0.0.1",
'port': 6379,
'timeout': 1,
'serializer': {
'class': "pycached.serializers.PickleSerializer"
},
'plugins': [
{'class': "pycached.plugins.HitMissRatioPlugin"},
{'class': "pycached.plugins.TimingPlugin"}
]
}
})
def default_cache():
cache = caches.get('default') # This always returns the SAME instance
cache.set("key", "value")
assert cache.get("key") == "value"
def alt_cache():
cache = caches.create('redis_alt') # This creates a NEW instance on every call
cache.set("key", "value")
assert cache.get("key") == "value"
def test_alias():
default_cache()
alt_cache()
caches.get('redis_alt').delete("key")
if __name__ == "__main__":
test_alias()
How does it work
Pycached provides 3 main entities:
backends: Allow you specify which backend you want to use for your cache. Currently supporting: SimpleMemoryCache, RedisCache using redis.
serializers: Serialize and deserialize the data between your code and the backends. This allows you to save any Python object into your cache. Currently supporting: StringSerializer, PickleSerializer, JsonSerializer, and MsgPackSerializer. But you can also build custom ones.
plugins: Implement a hooks system that allows to execute extra behavior before and after of each command.
If you are missing an implementation of backend, serializer or plugin you think it could be interesting for the package, do not hesitate to open a new issue.
Those 3 entities combine during some of the cache operations to apply the desired command (backend), data transformation (serializer) and pre/post hooks (plugins). To have a better vision of what happens, here you can check how set function works in pycached:
Amazing examples
In examples folder you can check different use cases:
Documentation
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file pycached-0.0.9.tar.gz
.
File metadata
- Download URL: pycached-0.0.9.tar.gz
- Upload date:
- Size: 29.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.20.1 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 336721eefaf66f682531ed2e9a57b406a80b673d552e3e8a9fea33d22f5ffffb |
|
MD5 | b08a17b6cd3688b27c92bdb74eb60ea9 |
|
BLAKE2b-256 | 63b03598a3a1a946436d16503a373a971efd9c76f6bef59e64c1c0980aefe45b |