Skip to main content

CALPHAD tools for designing thermodynamic models, calculating phase diagrams and investigating phase equilibria.

Project description

Join the chat at https://gitter.im/pycalphad/pycalphad Test Coverage Build Status Development Status Latest version Supported Python versions License

Note: Unsolicited pull requests are _happily_ accepted!

pycalphad is a free and open-source Python library for designing thermodynamic models, calculating phase diagrams and investigating phase equilibria within the CALPHAD method. It provides routines for reading Thermo-Calc TDB files and for solving the multi-component, multi-phase Gibbs energy minimization problem.

The purpose of this project is to provide any interested people the ability to tinker with and improve the nuts and bolts of CALPHAD modeling without having to be a computer scientist or expert programmer.

For assistance in setting up your Python environment and/or collaboration opportunities, please contact the author by e-mail or using the issue tracker on GitHub.

pycalphad is licensed under the MIT License. See LICENSE.txt for details.

Installation

See Installation Instructions.

Examples

Jupyter notebooks with examples are available on NBViewer and pycalphad.org.

Documentation

See the documentation on pycalphad.org.

Getting Help

Questions about installing and using pycalphad can be addressed in the pycalphad Google Group. Technical issues and bugs should be reported on on GitHub. A public chat channel is available on Gitter.

Citing

If you use pycalphad in your research, please consider citing the following work:

Otis, R. & Liu, Z.-K., (2017). pycalphad: CALPHAD-based Computational Thermodynamics in Python. Journal of Open Research Software. 5(1), p.1. DOI: http://doi.org/10.5334/jors.140

Acknowledgements

Development has been made possible in part through NASA Space Technology Research Fellowship (NSTRF) grant NNX14AL43H, and is supervised by Prof. Zi-Kui Liu in the Department of Materials Science and Engineering at the Pennsylvania State University. We would also like to acknowledge technical assistance on array computations from Denis Lisov.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycalphad-0.11.0.tar.gz (3.6 MB view details)

Uploaded Source

Built Distributions

pycalphad-0.11.0-cp312-cp312-win_amd64.whl (990.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

pycalphad-0.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pycalphad-0.11.0-cp312-cp312-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pycalphad-0.11.0-cp312-cp312-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pycalphad-0.11.0-cp311-cp311-win_amd64.whl (996.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

pycalphad-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pycalphad-0.11.0-cp311-cp311-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pycalphad-0.11.0-cp311-cp311-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pycalphad-0.11.0-cp310-cp310-win_amd64.whl (995.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

pycalphad-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pycalphad-0.11.0-cp310-cp310-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pycalphad-0.11.0-cp310-cp310-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pycalphad-0.11.0-cp39-cp39-win_amd64.whl (997.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

pycalphad-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pycalphad-0.11.0-cp39-cp39-macosx_11_0_arm64.whl (1.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pycalphad-0.11.0-cp39-cp39-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file pycalphad-0.11.0.tar.gz.

File metadata

  • Download URL: pycalphad-0.11.0.tar.gz
  • Upload date:
  • Size: 3.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for pycalphad-0.11.0.tar.gz
Algorithm Hash digest
SHA256 6fc874a37582c35964c672424e65c940579b5e0fbd74bdb41015a21833643eb7
MD5 c0aa677976268049e077ea66db636efc
BLAKE2b-256 3c646fb88736abea123c0aac68dd847af5d77d0f0343c3275b78a6f3f63dac5f

See more details on using hashes here.

File details

Details for the file pycalphad-0.11.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for pycalphad-0.11.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 520685f57b59ed07f6beb180ac1f57b502af713237a26bdcd1c186621d9a86df
MD5 4002862711c20f9db92d4f106d844a8c
BLAKE2b-256 4ac4bd6b4f7f2b436c7b0a59605b588eb37f90f9e671347ca246b68c9417d549

See more details on using hashes here.

File details

Details for the file pycalphad-0.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycalphad-0.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a5ab1ce86fc7ca9f211ce32100d5e11ccbc25ab9349ea19908e07fbd7bfe2249
MD5 b233ede35563c52a4034c8f623c85dea
BLAKE2b-256 cabcbe451b1c04e5c84a2bf811440de8ba75e1a9e05c4523065b1d7315b45b8e

See more details on using hashes here.

File details

Details for the file pycalphad-0.11.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycalphad-0.11.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 394de0b5caa51900e7f0eaecbd013ad7341d774a2a1c8af28b1386880489bfcd
MD5 ca90a3e6de0728cf330e4da0765caac3
BLAKE2b-256 3953b61e6b2e4b93f4a728b31292e873f82253707bbc49994046f488f7b11d90

See more details on using hashes here.

File details

Details for the file pycalphad-0.11.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pycalphad-0.11.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a253667f3d3f3cb4bba66a4c26a5be523c74a38d4b57f1b7f31949c2e6cc7ba5
MD5 8a46598b2d6b8881c93b2104ca1dc023
BLAKE2b-256 b947704a2eac5084872dceb108875e20195edc86919642d660169bdfa4f81828

See more details on using hashes here.

File details

Details for the file pycalphad-0.11.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pycalphad-0.11.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5c8c57448709c0776a47e553c04a1bbe218d503e5eaa3e2dc4a4cc46eb6f4d34
MD5 8c1d47cce4d0b59fb69c510aafdad517
BLAKE2b-256 0dcfb79bab9347ec1f4140f79ec421a05f27526e0c5542a077b86c0ae7b46ee1

See more details on using hashes here.

File details

Details for the file pycalphad-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycalphad-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e04b987988a9142ddf04c8c416cc1a8ad79660d6839fcf9c883d4cb7bfebca02
MD5 12363220f8cb12a89229d42d1b70b373
BLAKE2b-256 ba4815644101383dcf8f5300e359a02809497ec68f3611f3a0525be9dce7e8f8

See more details on using hashes here.

File details

Details for the file pycalphad-0.11.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycalphad-0.11.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 16403cd762d8d74db4b7701bf5b5a62f33bf14af3bc9930dc365ac8ae2a092ab
MD5 42a490dd24bdec67d0e0d805b64b1468
BLAKE2b-256 360bd91b199d2d9661995f3cc2fe81b8cb3fdb583bf69ae864058d3b478a0a0c

See more details on using hashes here.

File details

Details for the file pycalphad-0.11.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pycalphad-0.11.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3ff6ee97dfcaf8910d98008e2e4d487599175f77e68a657752b6b15a7a3b451f
MD5 212c67bc8ea7a8ac2ab2e6ed6a41f815
BLAKE2b-256 21ba5678304ed43db1351e20b9e16afae259a063814c131caaf026de7b16c515

See more details on using hashes here.

File details

Details for the file pycalphad-0.11.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pycalphad-0.11.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3929f640b88f15db6ecb356602a895b86b0dbcec75c118237ba24bca6d4ec39f
MD5 73943f31ce1d0053221e96fa9f800642
BLAKE2b-256 bbf93d8231f85f95e3e0a1884e72e627b62960638a0db5dfde64af8952df49ca

See more details on using hashes here.

File details

Details for the file pycalphad-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycalphad-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ff9bdc34d867ae81be6a78ccd24495313c807016994554178a598c865f278414
MD5 722fef7bd1463b2e360d1ad7b0cf17f4
BLAKE2b-256 6ead30fd8ed37f01e40e4d899f8aca838182afe47665cbee32dc8a3abd56939d

See more details on using hashes here.

File details

Details for the file pycalphad-0.11.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycalphad-0.11.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c4aee77e4f9b93ab07f53714224d27d81e3dcc0c0a9f550c1d8e6684463b281c
MD5 8099a696c5c9b9ca42e4a30bfffad383
BLAKE2b-256 1fbbce1c2b411c322126b691409be3a2e399b2fa14ca29293bfa7ed067110d09

See more details on using hashes here.

File details

Details for the file pycalphad-0.11.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pycalphad-0.11.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 57b5c8d99a449dcc2243e24061902764c1b6127ea5e273f65a4636dcc8674844
MD5 9a1eed9175e49b9e7c030d45626c4b4f
BLAKE2b-256 a2b39df65660d89328239b47c806aa581c51b04328cdde8dd70840c464e32897

See more details on using hashes here.

File details

Details for the file pycalphad-0.11.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pycalphad-0.11.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 997.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for pycalphad-0.11.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 08fa81d944c897d3502c1f3d01424573a9a04c3cb4e74525d36a9285d46bfe47
MD5 e32dbf0779002afc0c6a1197b161a97d
BLAKE2b-256 8c835cea59d9f155b5862387dc5f28d2df048189f914ffd26463ed285923770a

See more details on using hashes here.

File details

Details for the file pycalphad-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycalphad-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 51defd2e5781451e5154fbf26b3d43549436fb41d5cd0e4da169140adece5fd4
MD5 a3e99646141f6f545f462df7951f4710
BLAKE2b-256 1eafc4e026110d996e7d0857417b45f4bfd7741e30d51cfa876abbedcc5a5143

See more details on using hashes here.

File details

Details for the file pycalphad-0.11.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycalphad-0.11.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 474f5cc700fed0bd002dbab4cfba07bc635b13eb1e4d73739527c59a0f9eae4a
MD5 4422a7321015d5512f48817fcd299f92
BLAKE2b-256 e1b7f5863dae059330a50276e1e9c1a33c23c50ad664bcf15c3c009a4e04e67a

See more details on using hashes here.

File details

Details for the file pycalphad-0.11.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pycalphad-0.11.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1b8515f8f0ebcaca85cf8b73b91279993118a93e10c542535a8685feaba7a67f
MD5 c033c8336c5a0107ee8eef8c5588f24e
BLAKE2b-256 9dfee099708549849c5229cf2941e25db45cc7440e57717e41bcb3f29a272d70

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page