Skip to main content

A modern C++ header only cdf library

Project description

License: GPL v3 Documentation Status CPP17 PyPi Coverage Discover on MyBinder

Python packages

Linux x86_64 Windows x86_64 MacOs x86_64 MacOs ARM64
linux_x86_64 windows_x86_64 macos_x86_64 macos_arm64

Unit Tests

Linux x86_64 Windows x86_64 MacOs x86_64
linux_x86_64 windows_x86_64 macos_x86_64

CDFpp (CDF++)

A NASA's CDF modern C++ library. This is not a C++ wrapper but a full C++ implementation. Why? CDF files are still used for space physics missions but few implementations are available. The main one is NASA's C implementation available here but it lacks multi-threads support (global shared state), has an old C interface and has a license which isn't compatible with most Linux distributions policy. There are also Java and Python implementations which are not usable in C++.

List of features and roadmap:

  • CDF reading
    • read uncompressed file headers
    • read uncompressed attributes
    • read uncompressed variables
    • read variable attributes
    • loads cdf files from memory (std::vector or char*)
    • handles both row and column major files
    • read variables with nested VXRs
    • read compressed files (GZip, RLE)
    • read compressed variables (GZip, RLE)
    • read UTF-8 encoded files
    • read ISO 8859-1(Latin-1) encoded files (converts to UTF-8 on the fly)
    • variables values lazy loading
    • decode DEC's floating point encoding (Itanium, ALPHA and VAX)
    • pad values
  • CDF writing
    • write uncompressed headers
    • write uncompressed attributes
    • write uncompressed variables
    • write compressed variables
    • write compressed files
    • pad values
  • General features
    • uses libdeflate for faster GZip decompression
    • highly optimized CDF reads (up to ~4GB/s read speed from disk)
    • handle leap seconds
    • Python wrappers
    • Documentation
    • Examples (see below)
    • Benchmarks

If you want to understand how it works, how to use the code or what works, you may have to read tests.

Installing

From PyPi

python3 -m pip install --user pycdfpp

From sources

meson build
cd build
ninja
sudo ninja install

Or if youl want to build a Python wheel:

python -m build . 
# resulting wheel will be located into dist folder

Basic usage

Python

Reading CDF files

Basic example from a local file:

import pycdfpp
cdf = pycdfpp.load("some_cdf.cdf")
cdf_var_data = cdf["var_name"].values #builds a numpy view or a list of strings
attribute_name_first_value = cdf.attributes['attribute_name'][0]

Note that you can also load in memory files:

import pycdfpp
import requests
import matplotlib.pyplot as plt
tha_l2_fgm = pycdfpp.load(requests.get("https://spdf.gsfc.nasa.gov/pub/data/themis/tha/l2/fgm/2016/tha_l2_fgm_20160101_v01.cdf").content)
plt.plot(tha_l2_fgm["tha_fgl_gsm"])
plt.show()

Buffer protocol support:

import pycdfpp
import requests
import xarray as xr
import matplotlib.pyplot as plt

tha_l2_fgm = pycdfpp.load(requests.get("https://spdf.gsfc.nasa.gov/pub/data/themis/tha/l2/fgm/2016/tha_l2_fgm_20160101_v01.cdf").content)
xr.DataArray(tha_l2_fgm['tha_fgl_gsm'], dims=['time', 'components'], coords={'time':tha_l2_fgm['tha_fgl_time'].values, 'components':['x', 'y', 'z']}).plot.line(x='time')
plt.show()

# Works with matplotlib directly too

plt.plot(tha_l2_fgm['tha_fgl_time'], tha_l2_fgm['tha_fgl_gsm'])
plt.show()

Datetimes handling:

import pycdfpp
import os
# Due to an issue with pybind11 you have to force your timezone to UTC for 
# datetime conversion (not necessary for numpy datetime64)
os.environ['TZ']='UTC'

mms2_fgm_srvy = pycdfpp.load("mms2_fgm_srvy_l2_20200201_v5.230.0.cdf")

# to convert any CDF variable holding any time type to python datetime:
epoch_dt = pycdfpp.to_datetime(mms2_fgm_srvy["Epoch"])

# same with numpy datetime64:
epoch_dt64 = pycdfpp.to_datetime64(mms2_fgm_srvy["Epoch"])

# note that using datetime64 is ~100x faster than datetime (~2ns/element on an average laptop)

Writing CDF files

Creating a basic CDF file:

import pycdfpp
import numpy as np
from datetime import datetime

cdf = pycdfpp.CDF()
cdf.add_attribute("some attribute", [[1,2,3], [datetime(2018,1,1), datetime(2018,1,2)], "hello\nworld"])
cdf.add_variable(f"some variable", values=np.ones((10),dtype=np.float64))
pycdfpp.save(cdf, "some_cdf.cdf")

C++

#include "cdf-io/cdf-io.hpp"
#include <iostream>

std::ostream& operator<<(std::ostream& os, const cdf::Variable::shape_t& shape)
{
    os << "(";
    for (auto i = 0; i < static_cast<int>(std::size(shape)) - 1; i++)
        os << shape[i] << ',';
    if (std::size(shape) >= 1)
        os << shape[std::size(shape) - 1];
    os << ")";
    return os;
}

int main(int argc, char** argv)
{
    auto path = std::string(DATA_PATH) + "/a_cdf.cdf";
    // cdf::io::load returns a optional<CDF>
    if (const auto my_cdf = cdf::io::load(path); my_cdf)
    {
        std::cout << "Attribute list:" << std::endl;
        for (const auto& [name, attribute] : my_cdf->attributes)
        {
            std::cout << "\t" << name << std::endl;
        }
        std::cout << "Variable list:" << std::endl;
        for (const auto& [name, variable] : my_cdf->variables)
        {
            std::cout << "\t" << name << " shape:" << variable.shape() << std::endl;
        }
        return 0;
    }
    return -1;
}

caveats

  • NRV variables shape, in order to expose a consistent shape, PyCDFpp exposes the reccord count as first dimension and thus its value will be either 0 or 1 (0 mean empty variable).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycdfpp-0.6.4.tar.gz (1.2 MB view details)

Uploaded Source

Built Distributions

pycdfpp-0.6.4-pp310-pypy310_pp73-win_amd64.whl (388.8 kB view details)

Uploaded PyPy Windows x86-64

pycdfpp-0.6.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (816.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pycdfpp-0.6.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl (605.8 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

pycdfpp-0.6.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (654.8 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

pycdfpp-0.6.4-pp39-pypy39_pp73-win_amd64.whl (388.8 kB view details)

Uploaded PyPy Windows x86-64

pycdfpp-0.6.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (816.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pycdfpp-0.6.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl (605.8 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

pycdfpp-0.6.4-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (654.7 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

pycdfpp-0.6.4-pp38-pypy38_pp73-win_amd64.whl (388.8 kB view details)

Uploaded PyPy Windows x86-64

pycdfpp-0.6.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (815.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pycdfpp-0.6.4-pp38-pypy38_pp73-macosx_11_0_arm64.whl (605.9 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

pycdfpp-0.6.4-pp38-pypy38_pp73-macosx_10_15_x86_64.whl (654.8 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

pycdfpp-0.6.4-cp312-cp312-win_amd64.whl (390.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

pycdfpp-0.6.4-cp312-cp312-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

pycdfpp-0.6.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (816.4 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pycdfpp-0.6.4-cp312-cp312-macosx_11_0_arm64.whl (609.4 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pycdfpp-0.6.4-cp312-cp312-macosx_10_15_x86_64.whl (658.8 kB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

pycdfpp-0.6.4-cp311-cp311-win_amd64.whl (390.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

pycdfpp-0.6.4-cp311-cp311-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

pycdfpp-0.6.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (814.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pycdfpp-0.6.4-cp311-cp311-macosx_11_0_arm64.whl (607.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pycdfpp-0.6.4-cp311-cp311-macosx_10_15_x86_64.whl (655.6 kB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

pycdfpp-0.6.4-cp310-cp310-win_amd64.whl (389.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

pycdfpp-0.6.4-cp310-cp310-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

pycdfpp-0.6.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (814.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pycdfpp-0.6.4-cp310-cp310-macosx_11_0_arm64.whl (605.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pycdfpp-0.6.4-cp310-cp310-macosx_10_15_x86_64.whl (654.6 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pycdfpp-0.6.4-cp39-cp39-win_amd64.whl (382.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

pycdfpp-0.6.4-cp39-cp39-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

pycdfpp-0.6.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (814.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pycdfpp-0.6.4-cp39-cp39-macosx_11_0_arm64.whl (605.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pycdfpp-0.6.4-cp39-cp39-macosx_10_15_x86_64.whl (654.6 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pycdfpp-0.6.4-cp38-cp38-win_amd64.whl (389.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

pycdfpp-0.6.4-cp38-cp38-musllinux_1_1_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

pycdfpp-0.6.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (841.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pycdfpp-0.6.4-cp38-cp38-macosx_11_0_arm64.whl (613.8 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pycdfpp-0.6.4-cp38-cp38-macosx_10_15_x86_64.whl (678.7 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file pycdfpp-0.6.4.tar.gz.

File metadata

  • Download URL: pycdfpp-0.6.4.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pycdfpp-0.6.4.tar.gz
Algorithm Hash digest
SHA256 d9892cd3385cc5c23a2f2ec55b91d710ed241acb3ee08fada4fb820d879c92a2
MD5 0a1d1ec2ef9863cfba7f81d96e61dc3c
BLAKE2b-256 bcd18489e0f938dd4e07ce1836a8c899763ff54f98fdcd51f3c05172b56b04e9

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 5788494b63135f19866f5a77a25aa78b16341ce5207baf3d5af3c83ddc9086cd
MD5 cfa188c7cd7f0fcf642055ed9d2aa6df
BLAKE2b-256 06359967d4c2682a47cfe4a084d17ed83b52ee390353e9b25ebc28b9c90a8286

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 85b5163f5c33fafc6cb7bcf2292b9608e3293c9377f0a50e5fe0a064527921bd
MD5 5d149ba182cc0f27dda5ca3bf25ce1ec
BLAKE2b-256 c3f7daf45f5ae802a2af33a62714cf5cd5522521e2405c73bcf37cdaa0805a13

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 66cba39ff49d179a5b447ff035cb5d717927306bb32e7e186336a7e54570d54a
MD5 0c5861ed857e4e08f952651ad4d1d468
BLAKE2b-256 1fb1b850441401905e264af914e81ffd456d3d3c0463ecdb5a93f2789716f327

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b74eddef7373b3d18ef5c5284feab28f4aa76209b40f5c2d37206f8fe912059b
MD5 3ddc3d0d5031812f450e05523a3d3665
BLAKE2b-256 59d2cff30d4cc0a48887e6e1d86e4a23680ba7f7215230616ef0d63233ae2262

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 5e2c86c1d940812f9e4f4062aed1016b6f3f33a8d03e22600e9d91dfe45c9fd6
MD5 d16607b0ec63c088ca19be8206609f5e
BLAKE2b-256 68a7ec02220293cd6426ba50c301240095b584d54927c7452996ffbee4fa4c13

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 292d72d088fd843a03a5f3ed1d0870249362d70f635640bd95e996b2a58da71f
MD5 a09e314438f821d35c64f480ded5e9de
BLAKE2b-256 dd3dbabd1c48facd51189350d9109a2a6ae20a9db897260a6ec91b34e11a343a

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 115f5c6a9823312945e65559008405a3ad392b56a6fedd19e2b6f028a17f3de3
MD5 e6558c08f68c8e53051cb44b0610879d
BLAKE2b-256 2b1898aad21cf0390a9110706b60f6e157671c2d762183c73b4f7bdee19ddc5a

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4faac854350d65b2b6c1c5c80220906d65ca4933d38c9370753de6459ec885da
MD5 d830dc65cf158a951f9b6f265bd67d8d
BLAKE2b-256 7bbcacc0047fd2d8a86863b39b57b155381974c34f4689713885722edb72f373

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 562fe164102d84e037126b6fdd3a64a321d71de52d4b609d651c6d294bc2ca23
MD5 bf957ab456db59a9d6dac3c04d3938e3
BLAKE2b-256 c79fbfdd4377b9940661f840b9d8c1fde7abd96c76f4a2611e215405ca37842f

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 36e04ddf5646dfcd9d73648ae8644bb8ad7c637ab01617c2e6e1f937383fb9e0
MD5 2ffe95d8b5b64d7e9ff7f5dc0c2d11f5
BLAKE2b-256 2720bbe8dfb59f69347f07552dd03c1cdba5452fb5493559e0a59dbe614f1b0c

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 355140abe2deb3d63c0ec60ed1692d864c9697a1bc36c17e0b538c43379d5775
MD5 2a96bb58303d3b46e04fa7d28d231eef
BLAKE2b-256 85b26a8e4b93d8c9787d7555160ec895fde9258dd2f2a8d208edf2f8e2aff381

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-pp38-pypy38_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-pp38-pypy38_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 23fb21e746acddc460229616636d087a8e681df474c1bc05ced6292ec91f8104
MD5 d268733dd182c9a28fa8edff256246e7
BLAKE2b-256 dc31369eb162cf9302933c80426c9a8e7f0f4dd0888775066d6dfd6c89c4a524

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.6.4-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 390.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pycdfpp-0.6.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 1586f8a5b3e700bd7c16b60a44175fbf1017cf538ff465c2289ec330f8f8329b
MD5 1c3022eddc08cc025d207e25d079315e
BLAKE2b-256 0abaefe5620c3a99ba0a0ecee1aebb6d950ab8a7290506f54180fc126b1bfdf4

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d5b156f72daf3111985c4308cb78d3f0729cf02bb9a6d1ac1983325079a0348c
MD5 8bfba104aae9bdca4d3c13d2ff866dce
BLAKE2b-256 6e439d0e209ab91ce42f8a0691fd6dc31eec48853d4c6e0440d672c3904bd998

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a03437314fe37c453db73e20cae9d5d6db073447a4526664006ae3d531c6c596
MD5 514e8cabc2c990911980292689b4b096
BLAKE2b-256 e71a24246a63922506ed611ba3d463b7f791d88d004fc57635f06c0a2267b9cb

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6826a4e097e470d420202525d0bb4a79b8463b15b61d792d5fdf6b50ceea2fb7
MD5 56ebe4101b7f67d4ce9614fa54ce2368
BLAKE2b-256 6650710c0a0a857a55e63b33d6c2d6022c6fc1d0779b948b4e9d693b7e7e136a

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 9f7f99087fc1af455c9d5d929a2ebfb30751bdea62fbb262903cf1f8c5bbb1c1
MD5 0847258e0374c8bb84e96dc873fef470
BLAKE2b-256 7bb952e23b969ddc93e8c4f97381f147f06c9ae9275dabea4b1e4c930b90e83b

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.6.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 390.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pycdfpp-0.6.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c600d8a46fd4c1a2324e8d8d6e0c945d1dba25c71d515419411e406ead3824fb
MD5 197855b5dff2578182f1d95e29d613d6
BLAKE2b-256 f0e57b40c6ac86577240d799975573b06b60dbc5ee284582e6be1bfdb58ef2eb

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7239409f4aa379fda332568255a71ba1044d50423bc9fdf1699f192ab642d142
MD5 b1b0b63b43954876eb3bdd350a5c5f90
BLAKE2b-256 ef2c460c48751c9d65b5ba3b0b71a55d85c177210a15338e52a1e2872eb7f457

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bdbd3daad23361b83e453fc65346aea0ab57c7b9eb543be6c575eb0fd930c873
MD5 69d8fd8cb9cdfba0d28bd3748ee5b9c4
BLAKE2b-256 00a356c7545e40014e2cb07b675b21a052ac2d46782881e7e13bda028c40c5e4

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 016acc0b4d7a96a8376d928aa4512a2ec5e32aa54af623ea2f5717295034ad76
MD5 814e42a08cb41edb780f90106ce61930
BLAKE2b-256 58cc355f38de1de665ecc8df8f224bf19b6fa42d89ffc5bb671408c97c907ad0

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a34d4a9fb052dc9c98ca63b4e7a6caa2c5145c19e179757e3bed98d73a7b1fae
MD5 2fec38d25f2a3f8da9e915dc116b17ee
BLAKE2b-256 a77a8c361830bfca535c6066b3d0e566d490b2f5a28453b6a3558a41741531ea

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.6.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 389.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pycdfpp-0.6.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 486c3f217a7f58cff4ced4a6bf9ccdcbf7379d2f0d91d218aef8a53fe1039228
MD5 058437a04c7f9c828b7b87b4232aafc6
BLAKE2b-256 241b59d39ff96911086a1cf87d81a363db14b59cbeddd2e5e5d5cc98b2be046a

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 07a43597bfdd05fa751902bc91ed7025a4b1480fc7cd3169e8f046cc8952e596
MD5 825d2ab6a817c7185b604a2acfc6ac5d
BLAKE2b-256 f7310569d6de34e0fad626979246c60dfcdc2e29598e3f971c1946475054aaf9

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e47f0c127cf475016d4ab635c68519ff7f200f4c325b23e8489540e0dc057ae
MD5 e2238f9036f75b06db0664938f40ed5c
BLAKE2b-256 d64dff7bc3d27d8831b85b2fab16d64812b281821dddb819358f71fefe3c12ee

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 755d263bcce612d099c3222be52e8a4d6f373716b8388433242d620ba765f23e
MD5 d0dcdcaf4c4ae7470b939c4e9fa1d055
BLAKE2b-256 5e6ab51a1b69f1136d8e82c514879796c4d9ceb7403e0742c45ecadcbaebd3cb

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 fbd920c57f7a9437de27ede1e793715544e301adfb0b9c7b79375270e7266794
MD5 fdb66ac82e13147fb2204760fbaee854
BLAKE2b-256 92d2bcb962dcf16bdcfdd0e5e200518f9052e7eb4e24fab173bed17b972aef2e

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.6.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 382.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pycdfpp-0.6.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 59d6f9fb518b17b93b945cf704eeb10cd6c4fea7ad8217bcb292712f20be665d
MD5 a599e904631f1e46fb39697d807b742b
BLAKE2b-256 074456eef04fe3c2d97c5fb70b180b55d20a6d5b6ad42b2e0f4b75e86cc5f6e6

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8be7816defc2997de39e773c49386ebe48ca3d49dd19da52db1ce0e6c66b11e6
MD5 e94b3b01fcce0f9fb2a39037f7428f00
BLAKE2b-256 bdf32d9dc2559c3560dc1c9d7f42fb5d4ec8508ce4b6830feac352f6114d7db1

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 364ab2b7dbf4ac6ae67bfc2433d2342dbd05fc3c3b8569142e0a0409164159db
MD5 0a0975caeed0999f48a206b506016858
BLAKE2b-256 26fe150376e7521ded92e8f5e3de2a75bfadf31f3ebe91cc64170559e4adc3fd

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eaca6f26ed35439c8c6f94c32ea6e96baa19092349feb0c4c57279551c2446ed
MD5 51895a8f35125895be3a5abde20e860b
BLAKE2b-256 1b3cd33730659e50e1d73dfa8f0b54e900ce36571883167873dd6d2ecaa70122

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f4c87f4d51be0bd6aaeb2937896094387b4aba28b1a524e0ba2c67f8912e2bdd
MD5 9723b7e704fd8242aa0650a463d4eb10
BLAKE2b-256 9f72e4098ad5b37a06aaa02c1ebc9d44d6dc3e9cd2a1beda748b0d521c2339b6

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.6.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 389.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for pycdfpp-0.6.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 76d5745e1aa097cb876ec0e4582c01ad8c08fa3cd38a332d12303f5a546adb8f
MD5 ffad71bd2ab74b2b194bb63ed407abf4
BLAKE2b-256 beee6b90264a6a5ea3fe68d57ebae3a31a6e6d10c0d9ad7eeab4a2a62c29e754

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d7473df6a2a1d80e4db4ca6cbe6ce70f4ea8c7ec43d517fdd6bde8489997c7ff
MD5 b79a300415e663cdbc8e4a9b79600dbf
BLAKE2b-256 31021dcd8bc6be9a46c59166a498d5b740de8d1128b008be46911ccd91703310

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ab2e0c8fa3e886f5302b88b476bf00c59c7930f3765df828aa86b25ac453262d
MD5 1d8200ba418b58601eb019cd56695c73
BLAKE2b-256 c40949105087921f0c572e949e6987c02412649f864bf56272a8f7386056f3d1

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0b8bf8bd09221fbc952017ede9137aac7b5c833550f7da8e7791c072078d344c
MD5 da931ad23859029a7f26811107523b90
BLAKE2b-256 0442d9d20ffe8f71141c7daaea3aa0181b7bb9a46f251b5209330b4e7303a5f7

See more details on using hashes here.

File details

Details for the file pycdfpp-0.6.4-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.6.4-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 869ff7f0f41fe0815812fce1614714d4625d50d1aa12750824375ed01241057c
MD5 94dbd6f20557c50a82e48e36aa691d67
BLAKE2b-256 a33cc9533ffbc1292df18bd41ee0f6256be92d08ceb712d62386fc78569d6bc5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page