Skip to main content

A modern C++ header only cdf library

Project description

License: GPL v3 Documentation Status CPP17 PyPi Coverage Discover on MyBinder

Python packages

Linux x86_64 Windows x86_64 MacOs x86_64 MacOs ARM64
linux_x86_64 windows_x86_64 macos_x86_64 macos_arm64

Unit Tests

Linux x86_64 Windows x86_64 MacOs x86_64
linux_x86_64 windows_x86_64 macos_x86_64

CDFpp (CDF++)

A NASA's CDF modern C++ library. This is not a C++ wrapper but a full C++ implementation. Why? CDF files are still used for space physics missions but few implementations are available. The main one is NASA's C implementation available here but it lacks multi-threads support (global shared state), has an old C interface and has a license which isn't compatible with most Linux distributions policy. There are also Java and Python implementations which are not usable in C++.

List of features and roadmap:

  • CDF reading
    • read files from cdf version 2.2 to 3.x
    • read uncompressed file headers
    • read uncompressed attributes
    • read uncompressed variables
    • read variable attributes
    • loads cdf files from memory (std::vector or char*)
    • handles both row and column major files
    • read variables with nested VXRs
    • read compressed files (GZip, RLE)
    • read compressed variables (GZip, RLE)
    • read UTF-8 encoded files
    • read ISO 8859-1(Latin-1) encoded files (converts to UTF-8 on the fly)
    • variables values lazy loading
    • decode DEC's floating point encoding (Itanium, ALPHA and VAX)
    • pad values
  • CDF writing
    • write uncompressed headers
    • write uncompressed attributes
    • write uncompressed variables
    • write compressed variables
    • write compressed files
    • pad values
  • General features
    • uses libdeflate for faster GZip decompression
    • highly optimized CDF reads (up to ~4GB/s read speed from disk)
    • handle leap seconds
    • Python wrappers
    • Documentation
    • Examples (see below)
    • Benchmarks

If you want to understand how it works, how to use the code or what works, you may have to read tests.

Installing

From PyPi

python3 -m pip install --user pycdfpp

From sources

meson build
cd build
ninja
sudo ninja install

Or if youl want to build a Python wheel:

python -m build . 
# resulting wheel will be located into dist folder

Basic usage

Python

Reading CDF files

Basic example from a local file:

import pycdfpp
cdf = pycdfpp.load("some_cdf.cdf")
cdf_var_data = cdf["var_name"].values #builds a numpy view or a list of strings
attribute_name_first_value = cdf.attributes['attribute_name'][0]

Note that you can also load in memory files:

import pycdfpp
import requests
import matplotlib.pyplot as plt
tha_l2_fgm = pycdfpp.load(requests.get("https://spdf.gsfc.nasa.gov/pub/data/themis/tha/l2/fgm/2016/tha_l2_fgm_20160101_v01.cdf").content)
plt.plot(tha_l2_fgm["tha_fgl_gsm"])
plt.show()

Buffer protocol support:

import pycdfpp
import requests
import xarray as xr
import matplotlib.pyplot as plt

tha_l2_fgm = pycdfpp.load(requests.get("https://spdf.gsfc.nasa.gov/pub/data/themis/tha/l2/fgm/2016/tha_l2_fgm_20160101_v01.cdf").content)
xr.DataArray(tha_l2_fgm['tha_fgl_gsm'], dims=['time', 'components'], coords={'time':tha_l2_fgm['tha_fgl_time'].values, 'components':['x', 'y', 'z']}).plot.line(x='time')
plt.show()

# Works with matplotlib directly too

plt.plot(tha_l2_fgm['tha_fgl_time'], tha_l2_fgm['tha_fgl_gsm'])
plt.show()

Datetimes handling:

import pycdfpp
import os
# Due to an issue with pybind11 you have to force your timezone to UTC for 
# datetime conversion (not necessary for numpy datetime64)
os.environ['TZ']='UTC'

mms2_fgm_srvy = pycdfpp.load("mms2_fgm_srvy_l2_20200201_v5.230.0.cdf")

# to convert any CDF variable holding any time type to python datetime:
epoch_dt = pycdfpp.to_datetime(mms2_fgm_srvy["Epoch"])

# same with numpy datetime64:
epoch_dt64 = pycdfpp.to_datetime64(mms2_fgm_srvy["Epoch"])

# note that using datetime64 is ~100x faster than datetime (~2ns/element on an average laptop)

Writing CDF files

Creating a basic CDF file:

import pycdfpp
import numpy as np
from datetime import datetime

cdf = pycdfpp.CDF()
cdf.add_attribute("some attribute", [[1,2,3], [datetime(2018,1,1), datetime(2018,1,2)], "hello\nworld"])
cdf.add_variable(f"some variable", values=np.ones((10),dtype=np.float64))
pycdfpp.save(cdf, "some_cdf.cdf")

C++

#include "cdf-io/cdf-io.hpp"
#include <iostream>

std::ostream& operator<<(std::ostream& os, const cdf::Variable::shape_t& shape)
{
    os << "(";
    for (auto i = 0; i < static_cast<int>(std::size(shape)) - 1; i++)
        os << shape[i] << ',';
    if (std::size(shape) >= 1)
        os << shape[std::size(shape) - 1];
    os << ")";
    return os;
}

int main(int argc, char** argv)
{
    auto path = std::string(DATA_PATH) + "/a_cdf.cdf";
    // cdf::io::load returns a optional<CDF>
    if (const auto my_cdf = cdf::io::load(path); my_cdf)
    {
        std::cout << "Attribute list:" << std::endl;
        for (const auto& [name, attribute] : my_cdf->attributes)
        {
            std::cout << "\t" << name << std::endl;
        }
        std::cout << "Variable list:" << std::endl;
        for (const auto& [name, variable] : my_cdf->variables)
        {
            std::cout << "\t" << name << " shape:" << variable.shape() << std::endl;
        }
        return 0;
    }
    return -1;
}

caveats

  • NRV variables shape, in order to expose a consistent shape, PyCDFpp exposes the reccord count as first dimension and thus its value will be either 0 or 1 (0 mean empty variable).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycdfpp-0.7.4.tar.gz (1.7 MB view details)

Uploaded Source

Built Distributions

pycdfpp-0.7.4-pp310-pypy310_pp73-win_amd64.whl (398.8 kB view details)

Uploaded PyPy Windows x86-64

pycdfpp-0.7.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (861.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl (667.5 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

pycdfpp-0.7.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (717.0 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

pycdfpp-0.7.4-pp39-pypy39_pp73-win_amd64.whl (399.1 kB view details)

Uploaded PyPy Windows x86-64

pycdfpp-0.7.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (862.1 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl (667.6 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

pycdfpp-0.7.4-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (717.1 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

pycdfpp-0.7.4-pp38-pypy38_pp73-win_amd64.whl (398.8 kB view details)

Uploaded PyPy Windows x86-64

pycdfpp-0.7.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (861.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.4-pp38-pypy38_pp73-macosx_11_0_arm64.whl (667.6 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

pycdfpp-0.7.4-pp38-pypy38_pp73-macosx_10_15_x86_64.whl (717.1 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

pycdfpp-0.7.4-cp313-cp313-win_amd64.whl (401.7 kB view details)

Uploaded CPython 3.13 Windows x86-64

pycdfpp-0.7.4-cp313-cp313-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

pycdfpp-0.7.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (859.7 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.4-cp313-cp313-macosx_11_0_arm64.whl (671.6 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

pycdfpp-0.7.4-cp313-cp313-macosx_10_15_x86_64.whl (722.1 kB view details)

Uploaded CPython 3.13 macOS 10.15+ x86-64

pycdfpp-0.7.4-cp312-cp312-win_amd64.whl (401.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

pycdfpp-0.7.4-cp312-cp312-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

pycdfpp-0.7.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (858.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.4-cp312-cp312-macosx_11_0_arm64.whl (671.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pycdfpp-0.7.4-cp312-cp312-macosx_10_15_x86_64.whl (721.9 kB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

pycdfpp-0.7.4-cp311-cp311-win_amd64.whl (400.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

pycdfpp-0.7.4-cp311-cp311-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

pycdfpp-0.7.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (857.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.4-cp311-cp311-macosx_11_0_arm64.whl (668.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pycdfpp-0.7.4-cp311-cp311-macosx_10_15_x86_64.whl (718.4 kB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

pycdfpp-0.7.4-cp310-cp310-win_amd64.whl (399.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

pycdfpp-0.7.4-cp310-cp310-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

pycdfpp-0.7.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (858.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.4-cp310-cp310-macosx_11_0_arm64.whl (668.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pycdfpp-0.7.4-cp310-cp310-macosx_10_15_x86_64.whl (717.1 kB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

pycdfpp-0.7.4-cp39-cp39-win_amd64.whl (391.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

pycdfpp-0.7.4-cp39-cp39-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

pycdfpp-0.7.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (858.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.4-cp39-cp39-macosx_11_0_arm64.whl (668.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pycdfpp-0.7.4-cp39-cp39-macosx_10_15_x86_64.whl (717.3 kB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

pycdfpp-0.7.4-cp38-cp38-win_amd64.whl (399.6 kB view details)

Uploaded CPython 3.8 Windows x86-64

pycdfpp-0.7.4-cp38-cp38-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

pycdfpp-0.7.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (894.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pycdfpp-0.7.4-cp38-cp38-macosx_11_0_arm64.whl (676.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pycdfpp-0.7.4-cp38-cp38-macosx_10_15_x86_64.whl (750.5 kB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file pycdfpp-0.7.4.tar.gz.

File metadata

  • Download URL: pycdfpp-0.7.4.tar.gz
  • Upload date:
  • Size: 1.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pycdfpp-0.7.4.tar.gz
Algorithm Hash digest
SHA256 30a627e8163378e3e826609d345cfa9f51e2c90ce07dacbef36ba32125f7a5d1
MD5 a5ec7cdb851ddf3e90f5fdcb0a1087c0
BLAKE2b-256 ef684f1e08fa57e1702f7300e4fb56a85b526894f3f4834fb6408c25694e0f0f

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 b52828308f479e39f18e654ccac3ba5065b97b7c5b7100201955ab879707c306
MD5 32ba7c25132879e66625784c1fe31810
BLAKE2b-256 9adfc71bc779c57e490bd4657d9137af9a74d0b27ebeb1e34ef292d912e94a8b

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 14e8ce4affb8c1fbfbb0751c73fc915cf7fdaea9c8feaef7cc4594d21e60e80e
MD5 4516aa32c013dd24b4f4cc3f44afe966
BLAKE2b-256 a57025971ce028572e818a3b763d1bd5ade8babb726e488b64d9c4a934eec6a7

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 480f1de7fcb43e82b3a39fd5ba761eeddcde903ab4e56d118827d91bb53d11bf
MD5 c414e4e6aca1d3c04ae39ab1b0cf7340
BLAKE2b-256 52b3f9302efd26bda753a26e054902582c22a50f28f921f476862819ff23c55a

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 642483d9c44744adc29305a83b2e933624cfc697c0d3e316370d84736371e080
MD5 687b19f7f1007abcea8a4186809bac07
BLAKE2b-256 8961fab953a56fa6ae6a02b0aad3800f91e5c3e6000830a25105ce3629a98c4a

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 167b491cbbda2db759b6b348072c05ea328b5c768a2dcef0fc8613c5492177d9
MD5 7b59b0babdb26abbe3a06d01c3817c49
BLAKE2b-256 b200cc9fd764a5d642d93c5abd67c773feb69963966936f20bf5dd36caaead39

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9b6cfa6be671be04d91c7aa1fa3a1857b78076406b8e97afe291386bf85a541
MD5 24c550bab629fd96155a106728b7e9c5
BLAKE2b-256 4baadf2c80080ddd93c7ee6459bc7f93bfdabd1385d8883c3528117a23786d1e

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 54b4ce15fdaad4ecbd49aca0636271bd6e6434c661ad94fdeb0e110221a3dd2a
MD5 39ceba9d33232b8c62a477777bd8491b
BLAKE2b-256 e1337f5c9a4451f78189ed78405c5a6f95d63e00536c8558b27a263ed01ec08c

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0ef7ded12b075db713cc7856951146bc1a2e0e960f5d8cc1fe99793d328a05e7
MD5 7fa7968c975feca62b0aad9f947f1711
BLAKE2b-256 6e19d8812767b35f1342435d8fc8e0ffdc90f48a5796aa44b7de0de8d5abac69

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 7bd84439f29aef956df2ae8da761695d075d6e2d190106231dfed69f150139d5
MD5 9fdc30bf5ef6442baacc59355446948d
BLAKE2b-256 1c96fd289d6c5f988d2c0bc13b2927369e253e2988159d1e59139508edd89e89

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b4ecd4ed2e16875d93cbcd7d5a5a9427ca438227466bf42a0e7c855bc61e4868
MD5 68df69456c0fad79c4cc710dbc228d32
BLAKE2b-256 78c92b45ef0bee28296cf3cad19d8386888524527b9f0d76c369052d29624747

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c848daa9aa06c9d807e6f0c2811796e671fea976c9994479e25b0a879747538f
MD5 2849381f2a56a9b91119237ee61a7bba
BLAKE2b-256 0652fd1e81288474e710f250621fe35817b85a4cd31ca48a024ce737d5f03b4e

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-pp38-pypy38_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-pp38-pypy38_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 66df66821766cc469e74c05132c9640ef7b4bd51fb5b02ca3b9cd9a2425f519a
MD5 a82a2e906c9456762fb50635707e9b52
BLAKE2b-256 c83fe198bf2ad0a349cb40e1215e50a136fb216e805f9e7d0c7a7e513bf3c2a1

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.7.4-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 401.7 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pycdfpp-0.7.4-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 6b12a3cf56115031a1e4c6a601f5ed96e242ce10a70531dbb7fb12334837dce8
MD5 55cb88ad04b10755498b5d3899edd6f8
BLAKE2b-256 5ae0e0445c240a77698a8da474f78d81cb89231569fcf16b3002bf472277eaa3

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a1a03f20be2c6b3566dfc5c5ad744f2a8c17836c09ac870fe60ca3a7dd557101
MD5 85ff8b2528071efa0b29c3e809291820
BLAKE2b-256 947c400b5d030f4bc0f4020ac5844b7c930e9f41b07a66f537f015fcaf5d8818

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1a274ab807fb9bd4e1e588060c2660602228308bed6e8be74c3f5bd009485438
MD5 36187eec74bb06d67af8c711ad4efc27
BLAKE2b-256 80bb25c65855b0f24f2d3d0787db288d5f179ba1898404dea4cb1dfe8fdda747

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c01d3bd6c6af17e348b6d4e07de1da316b09bc059c93e3d6cb904b6245b18be8
MD5 2231999c6a0818f577ba80f91e9b163f
BLAKE2b-256 552ed80b0597c04d821dd38e927552fb7ccde5b8347ce926db190f8f94a898c0

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp313-cp313-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp313-cp313-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 53a193232324aee78f03cb972811002b3149257406086f44b67638f33652ecdd
MD5 ecf95233e100e8bfff32e11da45bf060
BLAKE2b-256 5f8a4769a04f9a0584a40f22abf1896bbe6b72622ff5b7f6b7d9c7d2069ab55e

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.7.4-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 401.7 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pycdfpp-0.7.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 897abbb120584ada27f710fadf93e4a310e486f88ad5f8ea04028722bb80ae14
MD5 384f6a92ab413f019d5b6a73789ee8e6
BLAKE2b-256 f9f0a72d6e24142f8603e92698dec68a5deaa9f059711728e47ce3b804430003

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f7a70ada95bc4315616477c5c5bac9b87353d655a7b5c4f467f853625bac0955
MD5 6aaace58202778652424fac4b34c2db0
BLAKE2b-256 3c5c40511b6d7382815614151697756339a598a08f9c9a92739d1e47977f5bd8

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e993892390d37246e9874593b3020dda5547f6179dff1f83a502a867f0d474fe
MD5 8bdcd1402ae21e45e6507c0ef5bb1705
BLAKE2b-256 7159c3e84fb2aeea80456b09df3ca3e7e90d0a8160358cb4c0fcdf6f7b33c5e9

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d4749814fc2ff7e732cad5bca0c658daccc1a5d2b3302a74bfbc7840bb3694da
MD5 7b818ef82f5ac8d5ba1af767404a567f
BLAKE2b-256 49e53fb69e10adaf236267ffbd1445e42d7bc5b1a51330401590bdb35695f08e

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 41d06072da460911cc1079cb95925816948a3149eedc294e28122861a7dbb4da
MD5 f5ba627613244e4d33e4385a24ea494f
BLAKE2b-256 66a131084dbb74f57b657f3b6e2e2add0aa60a396705b42b82f676ae527eacee

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.7.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 400.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pycdfpp-0.7.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 886761f97f8bd7d197e9ac32cbebf6e520ada283986e8d798c84714a0d2ee3be
MD5 fd4bcda3aefb3c2b6f3c76d003895dd4
BLAKE2b-256 891396d198cff9020db2467a470da6489c9a5549790613e355dfbeea5ac8025e

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1f65b2e35890073379a90d34476798d480350a22b8f53c2a09db64b04d8dbadf
MD5 87cd99efcf0a201e3768f2a446b88852
BLAKE2b-256 a442cc51146cfcb732125808f1835502a62b06a587ced22e6eae1410a2ec6db3

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 586bc4bb10c3400c33927e43a3e84981816efc0104760d098dd60c79d193aaaf
MD5 e282c7c29386a756d43522f9492c93e9
BLAKE2b-256 227a36d41aa3541a58d1bc43da595ad9a357427610d24931b6545882bc828be7

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 311e090b4d3b2a6ec9bdc30d5788de1e662d58e3eff2abc7780cd86e127a64f6
MD5 a7eef229c66ea733d6d2d15c9a524e51
BLAKE2b-256 4a0eea29cf9e30e5cb5df7ef763e41607d72f90b660c03f054a9ea6b7a94dd40

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 2f618ef2fcc90ccf559879c521cdfff152b0050907d41645ff6985749978218a
MD5 3c8101996159d8baa6015c1fd953e6e3
BLAKE2b-256 54745fef8ae9d76462f1c57698a07913d1e39fa41f23e26897e1b35c311885a4

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.7.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 399.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pycdfpp-0.7.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c683eb997796e2b55c3676c5b06649d8c4ed46bcce4a035cf7abd65d2f6e3132
MD5 581c7fadfbd6664997098356f4b98b36
BLAKE2b-256 b87ca9f5c5dbf81e2ab6ab580766945986b908a2d32dec56c051251425df4d14

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3fda3c31d97a0b8613719a06aedc273e98344660d5e094cdc37ee0a0d6320dcb
MD5 a5642cd5e199c2e2f982085a6f86cc09
BLAKE2b-256 b471aee641ea6b498caad090d6479de869f2dc1de65113d3f02f5e8dc64e83ca

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c2ca7d830f3cdf1112b42ae21f6599cebf0f58f58e4078ff9f0785fe838c24b
MD5 f9d194e22b79703062f8b19dd5a2a774
BLAKE2b-256 f089466ec2e7d6a48a3f9cbf7daf61e47895d5c2adf38a2c613c7d2f740f4187

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 64d4844cb2dc320c7b0235a3e1db6153b0dfe2101940734d22adad0d10b615cf
MD5 8d93537e721efb9a69ce00a6e2ed83fd
BLAKE2b-256 c63ad8d3f10011cd0ea6b2540a61eb55506efd09a81348ad8f85ca8674e1d688

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 70b9e55b8f0020ec5cb62d9e6d584387456483b249978422fe2124efef02e213
MD5 bf2edbb4d982ac8f8b3c71b3cc0777ba
BLAKE2b-256 9a2e6996bf2f243f74b2e95112a1b22fcc0f9ae16dcc881ca76db218a6cd8f86

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.7.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 391.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pycdfpp-0.7.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 eae5f73f4082bf89392e7fbbb5b96ba7e4d687ecc2361a526d2c2876e1dac102
MD5 2d411f2c8bb2418c7a8b3f3436822e97
BLAKE2b-256 bf51f76573795544114e85f17b0a934a4e805c418bc635b4c39ccdc621f6bf98

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ad22bb5f69c695267b9c28d7c4641880ed9d98dd8fedb0b7a14b15d70cc72d7e
MD5 fa2dbdf559fb6f6044bc684278a51587
BLAKE2b-256 de70077e47e3181cb9384e6cec04b0701428c8fed8bf461e00bfd9ab8bd890a1

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ee4f9a802a1d3ba2b4ecb5bdf7e45f081ed10b9103152e867d960b2723743112
MD5 2adbc5ee0e256462e68f57a051d92e9f
BLAKE2b-256 85c384fdd3ff7f14658e8a56ab5eea7543054a258444cdb9e99d164a7af4e7cc

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fa15647150ff977eced74bb4f8a42a72be2ae77766c1be3c8b2d658e48f90448
MD5 5461fc855bcebdead379751f3246d500
BLAKE2b-256 5fffa7f9f630ebe875f2a19103b02ee00f502c5c95bcd7a73ce27ac37771808b

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f5909a494e67c62db632407138284a6a3bdb695e5789f4b65229d44000c74405
MD5 8cdd1c020b7ca031264417c5aac9f853
BLAKE2b-256 5346dc6d57e1cc4d50aa5a04c59d1c552b851c33fad9174dab9ac13b9edc766c

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pycdfpp-0.7.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 399.6 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pycdfpp-0.7.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8053b50285aa0e5fe0c9cafadeaa0010c428ff67e7586c8916ff232103aa0d60
MD5 9fbb3b00d3f6d44bae90c5fc7bcfaaa1
BLAKE2b-256 ecb4e5540517b1fb72535eb700294ab65aa354d7547308f81e054eda14bb482d

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c0c0784bbf2fbd499d334518e7fcecc971e3cc04dd72810c7c21323f0f6c1aa1
MD5 99b315feb944d6b7d8ca392876ef324f
BLAKE2b-256 0f2152dd27a64d7e12a353f817c7efeb6d20f0d716bf3487ee3289cf975f8f25

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 770800c20e3da93e93fdaebce0e8cc6078713b20b4c82dfb6d327f8a54ddd845
MD5 b7cdfbbce6eced0d8b772cbfb0a108e2
BLAKE2b-256 3537ef0b1ee44c8be65d56bcc68aa7a8f93252592e00352ed8a44567303fa46f

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6eb686b18a8371f72cb8dceb49bb4eab1bfe49f60ff9a04ff48c61f3f5369fcd
MD5 884ccab49a6cb30f55b43a42ba3a040c
BLAKE2b-256 b90741383367c3689b50f5d3eddb9741494676860fce2bad106d3c5661612a71

See more details on using hashes here.

File details

Details for the file pycdfpp-0.7.4-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pycdfpp-0.7.4-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 46ef6da6a856dc3392befbbe49532c8cf4d34cdeef6cd382f99b8b8c180cdf0e
MD5 c74149dfead130656217893a78c2ebf0
BLAKE2b-256 92e3cd364882e35d03120f9ace22e74cd3ce7c989a1e51b2ca3e98a2606d90df

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page