Skip to main content

Python implementation of the CellFIT method of inferring cellular forces

Project description

https://travis-ci.com/NilaiVemula/pycellfit.svg?branch=master https://codecov.io/gh/NilaiVemula/pycellfit/branch/master/graph/badge.svg Documentation Status https://badge.fury.io/py/pycellfit.svg

Project Description

pycellfit: an open-source Python implementation of the CellFIT method of inferring cellular forces developed by Brodland et al.

Author: Nilai Vemula, Vanderbilt University (working under Dr. Shane Hutson, Vanderbilt University)

Project Goal: To develop an open-source version of CellFIT, a toolkit for inferring tensions along cell membranes and pressures inside cells based on cell geometries and their curvilinear boundaries. (See [1].)

Project Timeline: Initial project started in August 2019 with work based off of XJ Xu. This repository was re-made in May 2020 in order to restart repository structure.

Project Status: Development

Getting Started

This project is available on PyPI and can be installed using pip.

It recommended that users make a virtual environment and then install the package as such:

Install from PyPI:

pip install pycellfit

Or compile from source:

git clone https://github.com/NilaiVemula/pycellfit.git
cd pycellfit
python setup.py install

Full documentation for this package can be found on readthedocs.

Dependencies

This project is written in Python and has been tested on Python 3.7 and 3.8 on Linux and Windows. This project primarily depends on numpy, scipy, matplotlib, and other common python packages common in scientific computing. Additionally, Pillow is required for reading in input image files. A full list of dependencies is available in the requirements.txt file. All dependencies should be automatically installed when running pip install.

Development

This project is under active development and not ready for public use. The project is built using Travis CI, and all tests are run with every commit or merge.

Features

Currently, pycellfit supports the following features in the cellular force inference pipeline:

  • [ ] converting raw images into segmented images

  • [x] read in segmented images

  • [x] convert between watershed and skeleton segmented images

  • [x] identify triple junctions

  • [ ] identify quad junctions

  • [x] generate a mesh

  • [x] fit cell edges to circular arcs

  • [ ] calculate tangent vectors using circle fits, nearest segment, and chord methods

    • circle fit is incorrect, others have not been added

  • [x] calculate tensions

  • [ ] calculate pressures

  • [x] visualize all of the above steps

Examples

A example walk-through of how to use this module is found in quickstart.

Future Goals

The final implementation of pycellfit will be as a web-app based on the Django framework. (See pycellfit-web)

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycellfit-0.2.3.tar.gz (20.3 kB view details)

Uploaded Source

Built Distribution

pycellfit-0.2.3-py3-none-any.whl (24.3 kB view details)

Uploaded Python 3

File details

Details for the file pycellfit-0.2.3.tar.gz.

File metadata

  • Download URL: pycellfit-0.2.3.tar.gz
  • Upload date:
  • Size: 20.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pycellfit-0.2.3.tar.gz
Algorithm Hash digest
SHA256 9388e0099064983520e9bda982c2ff4dbdf5f4becc055e93ab37eaa6ed8b78d5
MD5 2c32e0a7503075f9302803fa81efe853
BLAKE2b-256 d34e7d621503914936c2b41aef0a0ffea73bbb8bbab2dd12a411262da5aaf13d

See more details on using hashes here.

File details

Details for the file pycellfit-0.2.3-py3-none-any.whl.

File metadata

  • Download URL: pycellfit-0.2.3-py3-none-any.whl
  • Upload date:
  • Size: 24.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.8.5

File hashes

Hashes for pycellfit-0.2.3-py3-none-any.whl
Algorithm Hash digest
SHA256 2647ebb24305b95502b134710379bc7c7b7bce3ddcf5a88ae928b5495b5f21b3
MD5 4658fe37bb04050ffd01e4c45eca9220
BLAKE2b-256 1f88d34ed8625c653797b7604d8f8583eeb5d621feb8f973a79331913a2b7404

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page