This module performs conversions between Python values (numbers and dictionaries) and C structs represented as Python bytes objects.
Project description
Lightweight serialization module for Python.
PyCerializer is a lightweight serialization module for Python. The aim of PyCerializer is to produce serialized data that can be easily read in other programming languages such as C/C++ and others.
Requirements
There are no external dependencies.
The package is based on standard python module struct
that is available in all supported python versions, but
the PyCerializer use also typing
module that was introduced
in Python 3.5.
Supported types:
- Numbers
- [u]int64_t
- [u]int32_t
- [u]int16_t
- [u]int8_t
- Strings
- Structures
Endianess:
- little,
- big.
Installation
pip install pycerializer
Examples
Serialize the Python list and save to file:
original = (1, 123, 4321)
packed = pack_list_num(original, 'int16_t', 'little')
with open('file.bin', 'wb') as f:
f.write(packed)
Deserialize the list using Python:
with open('file.bin', 'rb') as f:
packed = f.read()
unpacked = unpack_list_num(*packed, 'int16_t', 'little')
Deserialize the list using C/C++:
FILE *f = fopen("file.bin", "rb");
const int n = 3;
int16_t buff[n];
fread(buff, sizeof(int16_t), n, f);
for (int i = 0; i < n; i++) printf("%d ", buff[i] );
Serialize and deserialize the list of dictionaries:
# data
data = [{
'name': b'John',
'age': 34,
'height': 177,
'surname': b'Smith',
'weight': 86
},
{
'name': b'Andrew',
'age': 43,
'height': 187,
'surname': b'Bluebaum',
'weight': 67
}, {
'name': b'Michael',
'age': 38,
'height': 189,
'surname': b'Brown',
'weight': 99
}]
# data field:type mapping
data_map = {
'name': 'string',
'age': 'int8_t',
'height': 'int32_t',
'surname': 'string',
'weight': 'int8_t'
}
# packing
data_bytes, data_elements, _, data_elements_size = pack_list_dict(data, data_map)
# unpacking
data_unpacked = unpack_list_dict(data_bytes, data_map, data_elements)
# metadata
meta = {
'number_of_elements': data_elements,
}
# metadata field:type mapping
meta_map = {
'number_of_elements': 'uint64_t'
}
meta_bytes, _ = pack_dict(meta, meta_map)
elements_size_bytes, _ = pack_list_num(data_elements_size, 'int64_t')
# write bytes to a file
with open('list_of_dicts.bin', 'wb') as f:
f.write(meta_bytes)
f.write(elements_size_bytes)
f.write(data_bytes)
# Get the C struct to use it later in C code
print(get_c_struct(meta_map, name='meta_t'))
print(get_c_struct(data_map, name='data_t'))
Deserialize and print the data from file using C/C++:
// Copied from Python output
typedef struct _meta_t {
uint64_t number_of_elements;
} meta_t;
typedef struct _data_t {
char * name;
int8_t age;
int32_t height;
char * surname;
int8_t weight;
} data_t;
// Read the data from buffer
size_t data_t_read(data_t *obj, uint8_t *bytes) {
int64_t *name_size = (int64_t *)bytes; bytes += sizeof(int64_t);
obj->name = (char*)calloc(*name_size + 1, sizeof(char));
memcpy(obj->name, bytes, *name_size); bytes += *name_size;
memcpy(&(obj->age), bytes, sizeof(uint8_t)); bytes += sizeof(uint8_t);
memcpy(&(obj->height), bytes, sizeof(uint32_t)); bytes += sizeof(uint32_t);
int64_t *surname_size = (int64_t *)bytes; bytes += sizeof(int64_t);
obj->surname = calloc(*surname_size + 1, sizeof(char));
memcpy(obj->surname, bytes, *surname_size); bytes += *surname_size;
memcpy(&(obj->weight), bytes, sizeof(int8_t)); bytes += sizeof(int8_t);
return 0;
}
// Never forget to deallocate the memory
void data_t_free(data_t obj) {
free(obj.name);
free(obj.surname);
}
int main() {
FILE *f = fopen("list_of_dicts.bin", "rb");
meta_t meta;
fread(&meta, sizeof(meta_t), 1, f);
data_t *data = (data_t*)malloc(sizeof(data_t) * meta.number_of_elements);
int64_t* sizes = (int64_t*)malloc(meta.number_of_elements * sizeof(int64_t*));
fread(sizes, meta.number_of_elements, sizeof(int64_t), f);
printf("Number of elements: %lu\n", meta.number_of_elements);
for (uint64_t i = 0; i < meta.number_of_elements; i++) {
uint8_t *buff = (uint8_t*)malloc(sizes[i]);
fread(buff, sizes[i], 1, f);
data_t_read(data + i, buff);
printf("%lu. %s %s, age: %d, height: %d, weight: %d\n", i, data[i].name, data[i].surname, data[i].age, data[i].height, data[i].weight);
data_t_free(data[i]);
free(buff);
}
fclose(f);
free(sizes);
free(data);
return 0;
}
Limitation
This module works well for flat data, and definitely, there is much more effort needed to store and read data than using, for example, pickle
.
On the other hand, it may take much more effort to read pickled data in C++.
Pycerializer was written ad-hoc for another project and was used for prototyping in Python, where there was a need to read the output in C++, which is the case where this module works quite well.
The number of supported types is very limited but can be easily extended.
Any contribution is welcome.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pycerializer-0.5.7.tar.gz
.
File metadata
- Download URL: pycerializer-0.5.7.tar.gz
- Upload date:
- Size: 18.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.44.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f355bc3f122002aee5211656bd270fcace6fb818bc9469e915465124a57204e4 |
|
MD5 | 405b18a58315b25453dfab84254ac0ae |
|
BLAKE2b-256 | 1bd1cf76761618430735c8b442b3b5d6c63dca762a7664843b20b2744718b286 |
File details
Details for the file pycerializer-0.5.7-py2.py3-none-any.whl
.
File metadata
- Download URL: pycerializer-0.5.7-py2.py3-none-any.whl
- Upload date:
- Size: 18.5 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.44.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0b17873c79954d6c5adb402e899d1f315e24acfb4d709d31d9f385986dce1a75 |
|
MD5 | 7fc69071a08495f56a74e7c28bfa8cc8 |
|
BLAKE2b-256 | 69a6bb6d32ef3bffcb5c86dfbf486175920f72b22a3322358d156f43062c0e89 |