Skip to main content

This module performs conversions between Python values (numbers and dictionaries) and C structs represented as Python bytes objects.

Project description

PyCerializer

Lightweight serialization module for Python.

Package version Package version

PyCerializer is a lightweight serialization module for Python. The aim of PyCerializer is to produce serialized data that can be easily read in other programming languages such as C/C++ and others.

Requirements

There are no external dependencies. The package is based on standard python module struct that is available in all supported python versions, but the PyCerializer use also typing module that was introduced in Python 3.5.

Supported types:

  • Numbers
    • [u]int64_t
    • [u]int32_t
    • [u]int16_t
    • [u]int8_t
  • Strings
  • Structures

Endianess:

  • little,
  • big.

Installation

pip install pycerializer

Examples

Serialize the Python list and save to file:

original = (1, 123, 4321)
packed = pack_list_num(original, 'int16_t', 'little')
with open('file.bin', 'wb') as f:
    f.write(packed)

Deserialize the list using Python:

with open('file.bin', 'rb') as f:
    packed = f.read()
    unpacked = unpack_list_num(*packed, 'int16_t', 'little')

Deserialize the list using C/C++:

FILE *f = fopen("file.bin", "rb");
const int n = 3;
int16_t buff[n];
fread(buff, sizeof(int16_t), n, f);
for (int i = 0; i < n; i++) printf("%d ", buff[i] );

Serialize and deserialize the list of dictionaries:

    # data
    data = [{
        'name': b'John',
        'age': 34,
        'height': 177,
        'surname': b'Smith',
        'weight': 86
    }, 
    {
        'name': b'Andrew',
        'age': 43,
        'height': 187,
        'surname': b'Bluebaum',
        'weight': 67
    }, {
        'name': b'Michael',
        'age': 38,
        'height': 189,
        'surname': b'Brown',
        'weight': 99
    }]

    # data field:type mapping
    data_map = {
        'name': 'string',
        'age': 'int8_t',
        'height': 'int32_t',
        'surname': 'string',
        'weight': 'int8_t'
    }

    # packing
    data_bytes, data_elements, _, data_elements_size = pack_list_dict(data, data_map)

    # unpacking
    data_unpacked = unpack_list_dict(data_bytes, data_map, data_elements)

    # metadata
    meta = {
        'number_of_elements': data_elements,
    }

    # metadata field:type mapping
    meta_map = {
        'number_of_elements': 'uint64_t'
    }

    meta_bytes, _ = pack_dict(meta, meta_map)
    elements_size_bytes, _ = pack_list_num(data_elements_size, 'int64_t')

    # write bytes to a file
    with open('list_of_dicts.bin', 'wb') as f:
        f.write(meta_bytes)
        f.write(elements_size_bytes)
        f.write(data_bytes)

    # Get the C struct to use it later in C code
    print(get_c_struct(meta_map, name='meta_t'))
    print(get_c_struct(data_map, name='data_t'))

Deserialize and print the data from file using C/C++:

// Copied from Python output
typedef struct _meta_t {
    uint64_t number_of_elements;
} meta_t;


typedef struct _data_t {
    char * name;
    int8_t age;
    int32_t height;
    char * surname;
    int8_t weight;
} data_t;

// Read the data from buffer
size_t data_t_read(data_t *obj, uint8_t *bytes) {
    int64_t *name_size = (int64_t *)bytes;           bytes += sizeof(int64_t);
    obj->name = (char*)calloc(*name_size + 1, sizeof(char));

    memcpy(obj->name, bytes, *name_size);            bytes += *name_size;
    memcpy(&(obj->age), bytes, sizeof(uint8_t));     bytes += sizeof(uint8_t);
    memcpy(&(obj->height), bytes, sizeof(uint32_t)); bytes += sizeof(uint32_t);

    int64_t *surname_size = (int64_t *)bytes;        bytes += sizeof(int64_t);
    obj->surname = calloc(*surname_size + 1, sizeof(char));

    memcpy(obj->surname, bytes, *surname_size);      bytes += *surname_size;
    memcpy(&(obj->weight), bytes, sizeof(int8_t));   bytes += sizeof(int8_t);

    return 0;
}

// Never forget to deallocate the memory
void data_t_free(data_t obj) {
    free(obj.name);
    free(obj.surname);
}


int main() {
    FILE *f = fopen("list_of_dicts.bin", "rb");
    meta_t meta;
    fread(&meta, sizeof(meta_t), 1, f);

    data_t *data = (data_t*)malloc(sizeof(data_t) * meta.number_of_elements);
    int64_t* sizes = (int64_t*)malloc(meta.number_of_elements * sizeof(int64_t*));
    fread(sizes, meta.number_of_elements, sizeof(int64_t), f);
    printf("Number of elements: %lu\n", meta.number_of_elements);

    for (uint64_t i = 0; i < meta.number_of_elements; i++) {
        uint8_t *buff = (uint8_t*)malloc(sizes[i]);
        fread(buff, sizes[i], 1, f);
        data_t_read(data + i, buff);
        printf("%lu. %s %s, age: %d, height: %d, weight: %d\n", i, data[i].name, data[i].surname, data[i].age, data[i].height, data[i].weight);
        data_t_free(data[i]);
        free(buff);
    }
    fclose(f);
    free(sizes);
    free(data);

    return 0;
}

Limitation

This module works well for flat data, and definitely, there is much more effort needed to store and read data than using, for example, pickle. On the other hand, it may take much more effort to read pickled data in C++. Pycerializer was written ad-hoc for another project and was used for prototyping in Python, where there was a need to read the output in C++, which is the case where this module works quite well. The number of supported types is very limited but can be easily extended. Any contribution is welcome.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycerializer-0.5.7.tar.gz (18.5 kB view details)

Uploaded Source

Built Distribution

pycerializer-0.5.7-py2.py3-none-any.whl (18.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pycerializer-0.5.7.tar.gz.

File metadata

  • Download URL: pycerializer-0.5.7.tar.gz
  • Upload date:
  • Size: 18.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.44.1 CPython/3.7.4

File hashes

Hashes for pycerializer-0.5.7.tar.gz
Algorithm Hash digest
SHA256 f355bc3f122002aee5211656bd270fcace6fb818bc9469e915465124a57204e4
MD5 405b18a58315b25453dfab84254ac0ae
BLAKE2b-256 1bd1cf76761618430735c8b442b3b5d6c63dca762a7664843b20b2744718b286

See more details on using hashes here.

File details

Details for the file pycerializer-0.5.7-py2.py3-none-any.whl.

File metadata

  • Download URL: pycerializer-0.5.7-py2.py3-none-any.whl
  • Upload date:
  • Size: 18.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.23.0 requests-toolbelt/0.9.1 tqdm/4.44.1 CPython/3.7.4

File hashes

Hashes for pycerializer-0.5.7-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 0b17873c79954d6c5adb402e899d1f315e24acfb4d709d31d9f385986dce1a75
MD5 7fc69071a08495f56a74e7c28bfa8cc8
BLAKE2b-256 69a6bb6d32ef3bffcb5c86dfbf486175920f72b22a3322358d156f43062c0e89

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page