Skip to main content

Python bindings to the Choco Constraint Programming solver

Project description

pychoco

ubuntu_build macos_build windows_build codecov PyPI version Documentation Status License

Current choco-solver version: 4.10.17

Python bindings for the Choco Constraint programming solver (https://choco-solver.org/).

Choco-solver is an open-source Java library for Constraint Programming (see https://choco-solver.org/). It comes with many features such as various types of variables, various state-of-the-art constraint, various search strategies, etc.

The pychoco library uses a native-build of the original Java Choco-solver library, in the form of a shared library, which means that it can be used without any JVM. This native-build is created with GraalVM native-image tool.

We heavily relied on JGraphT Python bindings source code to understand how such a thing could be achieved, so many thanks to JGraphT authors!

Installation

We automatically build 64-bit wheels for Python versions 3.6, 3.7, 3.8, 3.9, and 3.10 on Linux, Windows and MacOSX. They can be directly downloaded from PyPI (https://pypi.org/project/pychoco/) or using pip:

pip install pychoco

Documentation

If you do not have any knowledge about Constraint Programming (CP) and Choco-solver, you can have a look at https://choco-solver.org/tutos/ for a quick introduction to CP and to Choco-solver features. For this Python API, we also provide an API documentation which is available online at https://pychoco.readthedocs.io/ .

Quickstart

pychoco's API is quite close to Choco's Java API. The first thing to do is to import the library and create a model object:

from pychoco import Model

model = Model("My Choco Model")

Then, you can use this model object to create variables:

intvars = model.intvars(10, 0, 10)
sum_var = model.intvar(0, 100)

You can also create views from this Model object:

b6 = model.int_ge_view(intvars[6], 6)

Create and post (or reify) constraints:

model.all_different(intvars).post()
model.sum(intvars, "=", sum_var).post()
b7 = model.arithm(intvars[7], ">=", 7).reify()

Solve your problem:

model.get_solver().solve()

And retrieve the solution:

print("intvars = {}".format([i.get_value() for i in intvars]))
print("sum = {}".format(sum_var.get_value()))
print("intvar[6] >= 6 ? {}".format(b6.get_value()))
print("intvar[7] >= 7 ? {}".format(b7.get_value()))
> intvars = [3, 5, 9, 6, 7, 2, 0, 1, 4, 8]
> sum = 45
> intvar[6] >= 6 ? False
> intvar[7] >= 7 ? False

Build from source

The following system dependencies are required to build PyChco from sources:

Once these dependencies are satisfied, clone the current repository:

git clone --recurse-submodules https://github.com/chocoteam/pychoco.git

The --recurse-submodules is necessary as the choco-solver-capi is a separate git project included as a submodule (see https://github.com/chocoteam/choco-solver-capi). It contains all the necessary to compile Choco-solver as a shared native library using GraalVM native-image.

Ensure that the $JAVA_HOME environment variable is pointing to GraalVM, and from the cloned repository execute the following command:

sh build.sh

This command will compile Choco-solver into a shared native library and compile the Python bindings to this native API using SWIG.

Finally, run:

pip install .

And voilà !

Citation

Coming soon.

Getting help or contribute

We do our best to maintain pychoco and keep it up-to-date with choco-solver. However, if you see missing features, if you have any questions about using the library, suggestions for improvements, or if you detect a bug, please open an issue.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pychoco-0.2.1-pp310-pypy310_pp73-win_amd64.whl (19.5 MB view details)

Uploaded PyPy Windows x86-64

pychoco-0.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pychoco-0.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 14.0+ x86-64

pychoco-0.2.1-pp310-pypy310_pp73-macosx_14_0_arm64.whl (18.1 MB view details)

Uploaded PyPy macOS 14.0+ ARM64

pychoco-0.2.1-pp310-pypy310_pp73-macosx_13_0_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 13.0+ x86-64

pychoco-0.2.1-pp310-pypy310_pp73-macosx_12_0_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

pychoco-0.2.1-pp39-pypy39_pp73-win_amd64.whl (19.5 MB view details)

Uploaded PyPy Windows x86-64

pychoco-0.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pychoco-0.2.1-pp39-pypy39_pp73-macosx_14_0_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 14.0+ x86-64

pychoco-0.2.1-pp39-pypy39_pp73-macosx_14_0_arm64.whl (18.1 MB view details)

Uploaded PyPy macOS 14.0+ ARM64

pychoco-0.2.1-pp39-pypy39_pp73-macosx_13_0_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 13.0+ x86-64

pychoco-0.2.1-pp39-pypy39_pp73-macosx_12_0_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

pychoco-0.2.1-pp38-pypy38_pp73-win_amd64.whl (19.5 MB view details)

Uploaded PyPy Windows x86-64

pychoco-0.2.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pychoco-0.2.1-pp38-pypy38_pp73-macosx_14_0_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 14.0+ x86-64

pychoco-0.2.1-pp38-pypy38_pp73-macosx_14_0_arm64.whl (18.1 MB view details)

Uploaded PyPy macOS 14.0+ ARM64

pychoco-0.2.1-pp38-pypy38_pp73-macosx_13_0_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 13.0+ x86-64

pychoco-0.2.1-pp38-pypy38_pp73-macosx_12_0_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

pychoco-0.2.1-pp37-pypy37_pp73-win_amd64.whl (19.5 MB view details)

Uploaded PyPy Windows x86-64

pychoco-0.2.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pychoco-0.2.1-pp37-pypy37_pp73-macosx_14_0_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 14.0+ x86-64

pychoco-0.2.1-pp37-pypy37_pp73-macosx_13_0_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 13.0+ x86-64

pychoco-0.2.1-pp37-pypy37_pp73-macosx_12_0_x86_64.whl (18.4 MB view details)

Uploaded PyPy macOS 12.0+ x86-64

pychoco-0.2.1-cp313-cp313-win_amd64.whl (19.5 MB view details)

Uploaded CPython 3.13 Windows x86-64

pychoco-0.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

pychoco-0.2.1-cp313-cp313-macosx_14_0_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.13 macOS 14.0+ x86-64

pychoco-0.2.1-cp313-cp313-macosx_14_0_arm64.whl (18.1 MB view details)

Uploaded CPython 3.13 macOS 14.0+ ARM64

pychoco-0.2.1-cp313-cp313-macosx_13_0_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.13 macOS 13.0+ x86-64

pychoco-0.2.1-cp313-cp313-macosx_13_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.13 macOS 13.0+ ARM64

pychoco-0.2.1-cp313-cp313-macosx_12_0_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.13 macOS 12.0+ x86-64

pychoco-0.2.1-cp313-cp313-macosx_12_0_arm64.whl (9.3 MB view details)

Uploaded CPython 3.13 macOS 12.0+ ARM64

pychoco-0.2.1-cp312-cp312-win_amd64.whl (19.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

pychoco-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pychoco-0.2.1-cp312-cp312-manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.12

pychoco-0.2.1-cp312-cp312-macosx_14_0_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.12 macOS 14.0+ x86-64

pychoco-0.2.1-cp312-cp312-macosx_14_0_arm64.whl (18.1 MB view details)

Uploaded CPython 3.12 macOS 14.0+ ARM64

pychoco-0.2.1-cp312-cp312-macosx_13_0_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.12 macOS 13.0+ x86-64

pychoco-0.2.1-cp312-cp312-macosx_13_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.12 macOS 13.0+ ARM64

pychoco-0.2.1-cp312-cp312-macosx_12_0_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.12 macOS 12.0+ x86-64

pychoco-0.2.1-cp312-cp312-macosx_12_0_arm64.whl (9.3 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

pychoco-0.2.1-cp311-cp311-win_amd64.whl (19.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

pychoco-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pychoco-0.2.1-cp311-cp311-manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.11

pychoco-0.2.1-cp311-cp311-macosx_14_0_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.11 macOS 14.0+ x86-64

pychoco-0.2.1-cp311-cp311-macosx_14_0_arm64.whl (18.1 MB view details)

Uploaded CPython 3.11 macOS 14.0+ ARM64

pychoco-0.2.1-cp311-cp311-macosx_13_0_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.11 macOS 13.0+ x86-64

pychoco-0.2.1-cp311-cp311-macosx_13_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.11 macOS 13.0+ ARM64

pychoco-0.2.1-cp311-cp311-macosx_12_0_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

pychoco-0.2.1-cp311-cp311-macosx_12_0_arm64.whl (9.3 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

pychoco-0.2.1-cp310-cp310-win_amd64.whl (19.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

pychoco-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pychoco-0.2.1-cp310-cp310-manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.10

pychoco-0.2.1-cp310-cp310-macosx_14_0_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.10 macOS 14.0+ x86-64

pychoco-0.2.1-cp310-cp310-macosx_14_0_arm64.whl (18.1 MB view details)

Uploaded CPython 3.10 macOS 14.0+ ARM64

pychoco-0.2.1-cp310-cp310-macosx_13_0_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.10 macOS 13.0+ x86-64

pychoco-0.2.1-cp310-cp310-macosx_13_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.10 macOS 13.0+ ARM64

pychoco-0.2.1-cp310-cp310-macosx_12_0_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

pychoco-0.2.1-cp310-cp310-macosx_12_0_arm64.whl (9.3 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

pychoco-0.2.1-cp39-cp39-win_amd64.whl (19.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

pychoco-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pychoco-0.2.1-cp39-cp39-manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.9

pychoco-0.2.1-cp39-cp39-macosx_14_0_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.9 macOS 14.0+ x86-64

pychoco-0.2.1-cp39-cp39-macosx_14_0_arm64.whl (18.1 MB view details)

Uploaded CPython 3.9 macOS 14.0+ ARM64

pychoco-0.2.1-cp39-cp39-macosx_13_0_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.9 macOS 13.0+ x86-64

pychoco-0.2.1-cp39-cp39-macosx_13_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.9 macOS 13.0+ ARM64

pychoco-0.2.1-cp39-cp39-macosx_12_0_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

pychoco-0.2.1-cp39-cp39-macosx_12_0_arm64.whl (9.3 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

pychoco-0.2.1-cp38-cp38-win_amd64.whl (19.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

pychoco-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pychoco-0.2.1-cp38-cp38-macosx_14_0_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.8 macOS 14.0+ x86-64

pychoco-0.2.1-cp38-cp38-macosx_14_0_arm64.whl (18.1 MB view details)

Uploaded CPython 3.8 macOS 14.0+ ARM64

pychoco-0.2.1-cp38-cp38-macosx_13_0_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.8 macOS 13.0+ x86-64

pychoco-0.2.1-cp38-cp38-macosx_13_0_arm64.whl (9.2 MB view details)

Uploaded CPython 3.8 macOS 13.0+ ARM64

pychoco-0.2.1-cp38-cp38-macosx_12_0_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.8 macOS 12.0+ x86-64

pychoco-0.2.1-cp38-cp38-macosx_12_0_arm64.whl (9.3 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

pychoco-0.2.1-cp37-cp37m-win_amd64.whl (19.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

pychoco-0.2.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pychoco-0.2.1-cp37-cp37m-macosx_14_0_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.7m macOS 14.0+ x86-64

pychoco-0.2.1-cp37-cp37m-macosx_13_0_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.7m macOS 13.0+ x86-64

pychoco-0.2.1-cp37-cp37m-macosx_12_0_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.7m macOS 12.0+ x86-64

pychoco-0.2.1-cp36-cp36m-win_amd64.whl (19.6 MB view details)

Uploaded CPython 3.6m Windows x86-64

pychoco-0.2.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (10.7 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

pychoco-0.2.1-cp36-cp36m-macosx_14_0_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.6m macOS 14.0+ x86-64

pychoco-0.2.1-cp36-cp36m-macosx_13_0_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.6m macOS 13.0+ x86-64

pychoco-0.2.1-cp36-cp36m-macosx_12_0_x86_64.whl (18.4 MB view details)

Uploaded CPython 3.6m macOS 12.0+ x86-64

File details

Details for the file pychoco-0.2.1-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3466a266886d0f1cd8b40a74585ba76664a3a9471c3badb21d69efef7579dc58
MD5 c6d755db0fa6914f2a6f6e7bf37984a1
BLAKE2b-256 a0b5c34de6f31a165f72c144f20ab545004b8620144d36c203111c57d98efd5f

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 578847a8275e6094150d492c69dd609e196af0b84ca6f923361adf59dc577de4
MD5 520b2412ddfc9badbb65b46a34a7fe80
BLAKE2b-256 017b19585e4c9c294c13bd120cfff9875531b22455e201f6dc8cf7900d5ffe30

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp310-pypy310_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 b0d8036e814cfeafc0cee3bc95b95f679675a6d3054dfd7a28c8ed78a6aa42f3
MD5 847bb1510b99ac882c63439b76808b97
BLAKE2b-256 2c93ab17149df7e10966c6775d9c2142ecb7fe816a22740cbc1c51a4ad564b5a

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp310-pypy310_pp73-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp310-pypy310_pp73-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 08d95f6f6933250cbbfb81120814f0f9029dd44d9a3c3a93fe4a1a77d9a7aeb1
MD5 6b0cf3f873619dc95eb0531705a84153
BLAKE2b-256 a86dd0e29dce666e52ac3875ec267f18870ab16218b7986162f8e848416adb40

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp310-pypy310_pp73-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp310-pypy310_pp73-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 43b2965dd7e1f0a419ca2fb25f07054c1f6069c548851e30ea21ecc8dc9e86d5
MD5 aedd502e733ff64a0b014d4ddb71506d
BLAKE2b-256 3e53e9bcb80610128a9ceef801f768e9ad76f36a1ba82967040bfb86a633378f

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp310-pypy310_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp310-pypy310_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 7b1476916d9ec903b0175fb826dde24c9cb02edeec81679c7efc61ce03b1a838
MD5 0e4c3fda98f4406ee00424bfef605e83
BLAKE2b-256 2defbdab6840db23df180e1def4599d0ec183dddc8a349f50ca7ba2bf9bf6949

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d4ed9dfc80baf8b8777c1052dd4185864ccd10ea84e0613d03a1c759848a3a04
MD5 cec7b0a67e33d13baf8095e0384473c2
BLAKE2b-256 b42c6e3570a088355fe6cb5f8db66c2c9e1d8c5a552d032d4a23c744c2d29fa7

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a3ef9f6d6f5ff6546849d84cdc0bf99106e4243ee5f7edb56ab9e68bbfa803c
MD5 e309a507dec1906a1800a227aafc55f5
BLAKE2b-256 3a2904d2640197aa156c64cd83d476aef85f3427cf305ff13bd704d26d7959c3

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp39-pypy39_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp39-pypy39_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 301992e524d7ec28cf16b34c9919dd8e15be452160865a888c15c3610b766b43
MD5 f1dcf0794efc3e02f0aea8cab764c687
BLAKE2b-256 c55bb0f702528884f9b71d35dc9a9b2769cd13721d3edd41d460e57e2091785d

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp39-pypy39_pp73-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp39-pypy39_pp73-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 219d7a798eea3bc169f4cd17de6634c2774acff26c6fa1b3b1cf21ba987629bb
MD5 770762189d3d3dc06cefce06e8986b52
BLAKE2b-256 b05cf813a9ce6e15789d7859d23e0a808b8eb9125347e1287df473cdd32e03bf

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp39-pypy39_pp73-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp39-pypy39_pp73-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 dafd446197565ca03657fd894dfe03718602ccd86cbc3e658bb89960210fbaac
MD5 a6f7f058a5b403db85fe9250202519fa
BLAKE2b-256 e98ec58f5b253fc6fefa5e59f7cde263ec9a097d97c0ca0ace2515c56b76d368

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp39-pypy39_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp39-pypy39_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 fabd2a814ddad8a45bdb1354fac75e2ecd24743add8e57732c4308b044e719de
MD5 fb3ea8b78fa4520b14d5460a6765914d
BLAKE2b-256 f3aa5df6beb6205f44966000126df6bd7a405b802f74d03d81e30602fe8d7109

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 8b7dd5c456ab90b5c6583d83c91e6110a1862a4a5ddb76a4c2cf86d148550b45
MD5 704bcaf86c075301a2e38cf5916a27d0
BLAKE2b-256 d29764a6a6470c5bc2a55ebdc3da1023a8131f4212c1401f4bc2fcf3e14be079

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06fcc0d21e17ea047455d1d854ace700793d6776488af55f899d3f274f84c7a4
MD5 3a88a0f1d189a33205906348de7588a2
BLAKE2b-256 63fde2126014ed63fd5e516a7397fbd2c9acf8ba6bce5ef12dc8ae800e7da339

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp38-pypy38_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp38-pypy38_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 0f20d530dba04eea78048498137f26028ea688ef3590d92f4db7c2d04be1da0b
MD5 c108c70f612d23254222ca4a80c23cdf
BLAKE2b-256 bd5b3d38bb8bed95bb771bdfa2a95a8744ebc57739580c45b3172aa7deaf31bb

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp38-pypy38_pp73-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp38-pypy38_pp73-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 4ea821d2f364b60990cb2443e2f6fec4ecfa8893f6adc3ad50134606f12aa751
MD5 4716b6a3a5bf96f45ef596c349db2789
BLAKE2b-256 35abdd61a49fdfe094f1b3ad41c07968a0c3f28c9b3343556497def44618f953

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp38-pypy38_pp73-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp38-pypy38_pp73-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 8d681d7b23ca2785634023c02b93a6a1158db39dd916134321d868f9d4cfc83a
MD5 c6963d40326959832e6c1946f6f20851
BLAKE2b-256 0ca449bfc18af1bede49049b9d7b8f6aabcfddfbafdd736d4827ceda65898774

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp38-pypy38_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp38-pypy38_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 eb9f83b5178d86f34ea76495e83d1876432663b17aad241c5a0c36489e6af25f
MD5 b61a180ca455f8aa2b7f1133681fbdf1
BLAKE2b-256 0ddb8c9f0932d64cb317b113c3b8ebba0c310a4617ca04af4e3413279a5849fd

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 4713e614a9b9f880159000486aaef7c5bebb85f3787bd4dc5a116541ecb0d4b7
MD5 f4492dfb56dd99ccda5803c7e6129dd7
BLAKE2b-256 ea8f997d070daedcad6355b88017b1fbc0af9118a2c03b915685a9342b75a050

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9d16366b1cd59ac7f16b13d133f3294fad1cb535b6b8e54b56ff8e6ad040d3d
MD5 fe7918881a5219a231dcf22bccd88f8e
BLAKE2b-256 827e71edf39803e969369018ced53100a1527f96effcfcc5a55b302987820fb4

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp37-pypy37_pp73-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp37-pypy37_pp73-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 7c473b2ec6f192c591df73fa9f45b4b67e3b56eab6355d876a1fc2affb3827c5
MD5 876218fadf0d5d28d20ac77c63353e1e
BLAKE2b-256 ba619113e245781a8330c48b057fb9816777bece07cd098ba01aafeecb77cf52

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp37-pypy37_pp73-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp37-pypy37_pp73-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 7fd7efc1338a1f223c76d7f3b726f4cf4495190862ea89011d5418003c432fa4
MD5 d872951255624aa346e75b8e24f0b391
BLAKE2b-256 97f2f0c250fd36eaa86c3fc618049f2534c080eafcf7dce893a92fae9c0e9ff2

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-pp37-pypy37_pp73-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-pp37-pypy37_pp73-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 592c7085f8236126ad63e180260f013dac3c8719ab5c6dc7aa02ff677668e4cc
MD5 4bf8cf9ef68d8e56dc83e6dff7b81bdc
BLAKE2b-256 cbb2dd5364d559a5755821c3280702d999b75a0b8b328f8ac248d95beb5bb670

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: pychoco-0.2.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 19.5 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pychoco-0.2.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 be7980b2ba2d97ecb0406fccd8171e6866586016c4a38f95a51f53cb906358e1
MD5 bea7453ccb5cb9a36fe52e367b4218cc
BLAKE2b-256 7653748d61d91c6b4a6adcd7662d70d3d3e8d3b30932f43412ea413d6f71b93b

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f78f645880b4bd049356fdc4a78cacb0e5d4ad34fc9c857f6428d7b8c0c2b6d6
MD5 e4fd0fe6a51940fd3a2bb5a6790f0a7e
BLAKE2b-256 17b28b94ec826a4e8815720700a8cc548aec948599a2eb7b32da69438d9db31c

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp313-cp313-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp313-cp313-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 839ec3b9c0d95b0652c5aa7e71a8cebd7088605d513541e126617d1495b5ad85
MD5 ef269206b999400ab79e16d20a8f774c
BLAKE2b-256 0455b516aacb45c0f9fc2a10c29391fa71728ac98a3e97e2a2faf5bc7bd11eb0

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp313-cp313-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp313-cp313-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 e97a58c6cf82ce317a2b9d07ce414e98e5ba0e447681f9832ac90ae91618dc7b
MD5 722ca9f7765c7ea3c2e6d5f5ccd22ef3
BLAKE2b-256 6ac322f7cc46a84c7e8e5725cb6a921613b3ecf94b89cb6aeba2f8befc82b894

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp313-cp313-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp313-cp313-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 3918e5bf558f72a75c6b8835e4ccef0efcc9c142840dfdf41c8336a2fd7a599a
MD5 fe1f5510bbe53e3ef5c37758cdd463e1
BLAKE2b-256 2f80402548311ded0688dd3e01ac217b30f8a83e57b08b6128497fc8977ee0ec

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp313-cp313-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp313-cp313-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 26ad8bf9af00d4cb62188e76b88afbaa844e0b70f83564f36f43e9fdd68afc8c
MD5 321c09bb5587297fb4cbab4aaa56cee6
BLAKE2b-256 ba1a8907154f17daedc694234dd29729248f785cf5e90fa413a01d945323de6a

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp313-cp313-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp313-cp313-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 b2ad6b1792211b456b62e8698857d765db4161aa34b045b27958e3e5f87acc6a
MD5 e41a96b6abe9e6b27784d7659555ae89
BLAKE2b-256 c0d327a30de406d6f1901b8b143501033bc3aef7826ff4f8368fdd015a5f7c7a

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp313-cp313-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp313-cp313-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 adbdf25aad218439a7a2a48978b9c35843569a7507e8f27d2b1161e313c84b86
MD5 335aebaf435fecaa0865356a46b49d8b
BLAKE2b-256 7835a0a5c3e4f3ecfad99ccb60d42dd5f130bf3c425493438ef60a03769063a9

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pychoco-0.2.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 19.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pychoco-0.2.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 dfa06621afab6653885d099b5e3e90e61e7da7de104fb2f883f87ebaa7dbbc67
MD5 fd1890b18b147fadc1074e5212bd4cd2
BLAKE2b-256 337345b3bb727197844d283858cd308da661e736c010b2b5834a12bb4ce03f35

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c61e9fa8abb4d4b3b52e090a737eda334ff93efc90c3166271df689be773f69d
MD5 290392ff2ad1aafac0fe31068ce9cfd4
BLAKE2b-256 7b9568a3c8821498cb4941b4b65212137e49f35fc79d8c795b588f3d9fd542dc

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c1aa0ed182509676a1db936a4a4762160c455ec746f00740532846c8ef1bad5
MD5 21c25de61d7bf8b3568b56ba8edecfd2
BLAKE2b-256 dff8625f2f90a8168ad156b1257d698a2999712c3b885b38538c1e058f5beee9

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp312-cp312-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp312-cp312-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 5f21bb3ef56ca897169e427b4bc3315e7194c7b783219870316759c87ecad9a1
MD5 02079cfb5ecefc31f4487373b6b2576f
BLAKE2b-256 daa84d8c39085bfe6dd23beada95bc217927829799914a0c60941ee6beb0733d

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 15c652c56af86ac5fe74d0877d010565434ca856275881259d1ff5e037e83340
MD5 74da3820e0398befc7b4d57e0af098a6
BLAKE2b-256 6a68cbb1527193480d19793007b1fdc2a7610430a0fd74a48bb712fcd72e65df

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp312-cp312-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp312-cp312-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 bc5f126679703bb3c377ab63bf03571e66422e55fdca3f78b52cf20696477aee
MD5 be0ab96216f747a5fa19da461f42a7f0
BLAKE2b-256 c7cb1454968792c4c7899b373dd3b5086013ef37fb2ca27eca040c28a1c7c974

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp312-cp312-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp312-cp312-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 543f64e87d5c54cf8bdaf495e02aea6a7b6cc343c21039c44efa901c6dd64516
MD5 03727aa7356f6d9110b972eafa52bb76
BLAKE2b-256 ec71a1ecbb00b3265497e9f775a004c49548358f7fadc2e137277e32d112fba9

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp312-cp312-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp312-cp312-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 1fc9225b835d848f4168a5ba0af73316b90621821e815574c1cd6324b1b1abdc
MD5 2fcd19f7ed81621dac213d0ce76a1c3e
BLAKE2b-256 1bb3850a982b12c50f79fb624267a7d4ceea7b224e0b8d0ef1ba87ae84573d8a

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 0327a63041b25bd3e8f1552bbd5fdb907abb4b8c184e918984f54fba31681d77
MD5 bd9826a42baac60a00ea3b59cb91bd46
BLAKE2b-256 9889c57091f5d2ee40f13489b6d3fc4b065be95a18387ffced40595cb3e15a69

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pychoco-0.2.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 19.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pychoco-0.2.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ee55be15f70ecafc7e1eec968831ba95fb0f8fb62dc32e1d27e9dd622700ec89
MD5 ef9400dda28af177c7801c88b0102ea0
BLAKE2b-256 94362f1d498b5e4094046e109291c72648c8d678a8917727c448c0813bd1c8fc

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 36bd2850805d8e572570af0735d8420262862fa6dde9189a2e5afbc40542905f
MD5 49a995d4124b23069d23ee606303d5ad
BLAKE2b-256 9c320eaeadc679c0f4f278c8b85ba0050eafa9f50727deda4c5ab5b11f537484

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d1be602045ceecd778032801a9c577aeb18c4fa5cecc44db3537517dade95dc4
MD5 e2042442209d2808711b90cb89114fe7
BLAKE2b-256 e28c14ccf3bc6c819e3737e6917bc1236fe5381e17336b8ca83b7233b6272242

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp311-cp311-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp311-cp311-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 ac4081d894a36dfa061c1b71a93b0faadc8de9f487c0a98deacec8a68ebae8f6
MD5 6cae6225aa0f8fd946df17cda4df6aa5
BLAKE2b-256 95eb27b0671411af688b72cdc13f515267c95aaad32239a80c986d5fb39f3661

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 4933046f32ab4f133c34f9be5ae44ccf5451fc707e5c999d536384667892c850
MD5 68e14f27ed9d2fc49785381531a9fc8f
BLAKE2b-256 7d2a6419f97c92a17a366f4294c0e31aa1afaf9c265ba8f60b00f4107f593418

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 74b24f2a62e173c48e90e6f95f1ff68bf603d54214ed6b5f2d55ab5e65bc68e2
MD5 ae71c4774a361a9190d3e86da671a041
BLAKE2b-256 bc1356611edddcdb0c5607bc6d79aa484d7dd16916d40f82bc578571dc54ddbf

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp311-cp311-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp311-cp311-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 86e8ba2620b3e98e14e3ac78dc21bcf1fc93046e1b7410ac82d6fd5dfb9356bf
MD5 2ddb8ff859e16c27776b5d7b319501f2
BLAKE2b-256 eafbdc87f2d1071a6c3a35ca4b2adac0201bdf6cd1e73a2cc1c6613cb09399c7

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 f68d0b01170729c5cbf1cf8e0363f8aae00839b839a1200db842ff26b9e049bd
MD5 08be73051c001380f8c7d8d2beeb297c
BLAKE2b-256 60917608e0704729bcfda024543237b702d38c6b55c0b57e9356ace2a52bd28f

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 2aa9efa6a731f549354f7b080c4af35ef30503f8db4e552e7e418a3eb8c496ca
MD5 4d387b2cf5b517ec3ecc9641def72417
BLAKE2b-256 b1827c7877c3d1d4c7cdfd813d1ef433c5dac0b4660ae4dc39c40e155ca394bf

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pychoco-0.2.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 19.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pychoco-0.2.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 40bd290ba84363c86c933e408daee182a58a7451736265575f9b4b6ce8835a27
MD5 3d3907c9637277821dad0c9bde419008
BLAKE2b-256 efd52abf402e151ed3ae967e65bc70bcf079a69317ae0ae69333a6f73b111cb1

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 09192854bd5b2cf35d996256b8e448b7280d518b0ccd9e3711e76e7a1334cfb8
MD5 eb9202c0d8e444b7da47b02f010c94b6
BLAKE2b-256 ae0ba6bd41302ea338615f65fa9c20e9a1b5986690d4f355e9f8b2d93aa9260b

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 efa57666c34de742ac92be349151ad9a0653d72f8a14b3c363e352f289f40147
MD5 c5dcef869b5331a8794434c8ba3ab85f
BLAKE2b-256 a149219e18aa678c9467ff2fce719ee128eeda9642206e3c27cef2c3f82608ae

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp310-cp310-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp310-cp310-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 f3caa2fbeca7cf0d4bdb6899483bf757bd25bbe0f672000b17565c3c33d5189a
MD5 72912c3cf92cab534f1279894797e20b
BLAKE2b-256 d975803da761c5f88feb531632f2bf85102c0756be6b9cfb95727d64550a2446

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 f688311ab5b85dd1d0389ef0a8d4b8a32777aa1c83b72cd905d4c08eaa916333
MD5 3ea62bde360a014e3fbadbfa618523fc
BLAKE2b-256 306ba5b8a8cd931f06ea81e6c4a913dfe0e2339445b0f9d7e20cbd046242f0f5

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 19d4e2c71617fac681b5168579aaa0121415c160ab79905b3b0f01c191ed491e
MD5 32e3e0ec02398016b41cfb259b5e17d9
BLAKE2b-256 ad269db6d953d6abb5c95a6b9ecb2094d9b70bbd550ac29b8498c7f063ea0c0d

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp310-cp310-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp310-cp310-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 5b9611c40832304d4faab68d98d26fde5c43c5c89ad77b73645595f3e0294e80
MD5 61c6b1a24d5b976ae1c36735a9bee43e
BLAKE2b-256 4907eb7d2ddc9a7cfb45752f82d5a89fe492befa8661ea4395dd89d9b6b0d7a8

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 6bff065db139065fc9008bd26b9ce95a28480d86bad85df1d950a449d0b90cde
MD5 5a07e48549dfa87952cf236a8479ef51
BLAKE2b-256 a5c8ab3d6cf62050e709b4f4e05bde555831a23c6172794f5bf47108cb4a6dfd

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 2cbdcc9881ec404fd4b62cb3ed201ff555e752b3dc6643ed7cb1250a105668c1
MD5 d1b88fbd040148c02465f426127d0f3f
BLAKE2b-256 ef0586f5c81df8abc99710c1af93ae49a2ee48cf8249fb5fd8e2f2031e518316

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pychoco-0.2.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 19.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pychoco-0.2.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d75b29d56e5221eeb5415f31ec2609c9d545d64985d9400668cb5765a5a4671f
MD5 0c1dbc0fa31d267ec6cbd336a6cf7b77
BLAKE2b-256 b7ea16fcbc00ca637058e0a0a8124fc03eb157b988ee3fb8e09919924545f402

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2fa29d12b45ce7da0fe620140a1a38e3656a7c4d6a7f91d831574228b5e68163
MD5 30f47df818f3e48817199315423ceb21
BLAKE2b-256 0238a70858c1b41eed5f76ea5b6201fdd43e7f958f6ed954fe7fc1b8eaa1dee1

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 399ba6d565ee504524e0e5e017fd6c7654717c892aca3f51ed3e54af28e6bd04
MD5 ca8afa18400e7ec4194d608a9b06788d
BLAKE2b-256 e714305f8df3f7a94943738e2b451eff95131d48179e8e825c28d4a4886b2cd7

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp39-cp39-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp39-cp39-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 9588f6a113682d7369b68d92f939bc77f42a69e0496a8ace57823bc3b9e34c02
MD5 a85586f075729252acacc79a57b27c86
BLAKE2b-256 0f5b6b6e655f23be65364112289255ebec575cec997a36a12f962172cea7f0d6

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 5a9b4ddb2fb61fbc12e15693d8e53ad781e19c5a4cfcfc4755b0d192de28a577
MD5 fa80405a6a761973155cc790f4185b12
BLAKE2b-256 3284e714daeeb91f5434eff10529db3a56db21906a41709d739053adf13d67e2

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 769a5b8c0a5cab4211c4e5fef6be37f1d6af6ec83dd1ce9f41a6f2dcab86d234
MD5 1aa76e0910f7c0014109852e7dd5de51
BLAKE2b-256 fe305acca0047585d5cb1cc58fdb3262f9efe54ebd92c67296cff0637f671020

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp39-cp39-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp39-cp39-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 31682adf820fee8bd8d4a10112e1be039f91b08c2d1b07519adf7a3bb8ea7185
MD5 2c90ef7f5c0e10dccb2b375827b19c5d
BLAKE2b-256 ada803c2c628009f7dbf852f799ce65e5c5b062abe0a591ea2df605c5069d977

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 23c107fabd9b78079b2090f0dc4099fb870f0ddc4137ff942a540caccc402f9e
MD5 06a14fa527d0e361ade176f63c18156b
BLAKE2b-256 742aa4331118c9cdb8d0598c411c185e82f0026580970e0c066eb6d753a11432

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 d1cc8367f2b4b950ff85508392a68e1a706e5497839ffd690bb83e28229422ef
MD5 62f6a9b36f0117dcd3a96c58baee16b8
BLAKE2b-256 ad1d84a29aadfab3b40c6bc201c5140ef1fcacf3db8b68598f30930daaf24ab1

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pychoco-0.2.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 19.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pychoco-0.2.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 93cefb2f44faaea1e5767a4f5d000f5a51f15de18081751d7519cc5ef29bce18
MD5 126bd0612d777711bcb8d2450f487f4a
BLAKE2b-256 888b7b22c9bca1d9213f11593f312c02563b31ee8a1c6563d3e9f10f36c2eb0c

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6945d418e6abedce7a3e5b33accdc5a896f66affa2a36d470ecbd5d6c23cceab
MD5 449979be6440ef620ba3cb8eda3a0182
BLAKE2b-256 01d19c1c62da902df7830c6b6917b15ccf9114e23b46bfe2ee3bd5a30f435ed7

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp38-cp38-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp38-cp38-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 22045ce0c843e5cdfcba0ba894290e4a2025deb40081860c68132ee60decf31f
MD5 ac3c4ef722ede601ea8a6b189138008c
BLAKE2b-256 c2e600dbeae2509315de027fd5729556ce0a02dabb8bcbcbafcffb93765e091c

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp38-cp38-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp38-cp38-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 25a68327c42dce036b53c505a2bb67a3ac96bddfcd24b1ff01786d71df3e6561
MD5 e4d2d7b3e89b3284f8cb3e91d94c6ce6
BLAKE2b-256 f5711d050ee6cfc67360b29621dfb12faa45c665b8b531cf5dc706b376eac558

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp38-cp38-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp38-cp38-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 8279382089777241039d993ec01db8340a6b25b640dc689b6e0d1e98e8773d80
MD5 70da32b3c3f27a4ea878742f5426b8f8
BLAKE2b-256 6bcd2d2e18545cae156db460224f8f3130b17b019983479777075ebca11131f6

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp38-cp38-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp38-cp38-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 1f3b04306a01e191737eea687ee1344592f75902c669aea944ede8cbca8bda9f
MD5 4f33614de77b1ecb18a4d7c0b036ac6f
BLAKE2b-256 2ad8554ffed2919f48ab4507e5af3f54d355685a97364d1bfe2236c1bad23148

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp38-cp38-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp38-cp38-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 39431ba2f3d1ca2f46929ad1c413c0c2c56085281d3f5854cde9442a9b6d5f4f
MD5 4dd416745674f85442c17d95daafa58b
BLAKE2b-256 99b53d2ec6a6f87c079595f1142771d3388d7c776baad3ebd9da4b1f5672b4f1

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 3726166f3101372618219cc56e27acf5514b306ffc376e8b098bf31e558f57a1
MD5 2619e466e627c9527255ce2d7ab8bdff
BLAKE2b-256 d0693e1a23fad57a20857fe7fea1a1b0f745edc8f6e212066fa48d3c8205435a

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pychoco-0.2.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 19.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pychoco-0.2.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 109386b38cd308f73f1deaa989bb9de7597f5a0524e4085c833b841f5c1b7f22
MD5 d5f82b7835fdcf057f0520c55b9e43bb
BLAKE2b-256 2864dad3da9838f412e1f8a55d2386b4599fe76a4b68481e3b91722c71df06ac

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d5bd3775c970da2070aff012a7b26bbc602ec2c85d9061001d019d1f70fbb4c
MD5 69e954b06e611f69fa934852740de388
BLAKE2b-256 36ee648b22b0e4f263658cf0f08c17b552ff1b911b0023f2682505823ed0d305

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp37-cp37m-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp37-cp37m-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 9a52f16422dc85506ba71ee1341d098a075f8fdedc80e6097ff4fc1e6a506b4f
MD5 a9375d3b83d798f0d690334c0f7faf48
BLAKE2b-256 8f8acee71ee99e9c6c0c6fa02f785bcfaa4f1818616f84c4c0c299a4b2627aa4

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp37-cp37m-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp37-cp37m-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 6ad1d7f8b68ff26cc90bbcacc7ff289c37047a21f14523c91b3c1d867a22f06f
MD5 efd849e2bf2b4f5367cde98430414d72
BLAKE2b-256 9a922652324255961d7fd3966531dc9bcc2c6e7b0b32bbd5027560a20e91050d

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp37-cp37m-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp37-cp37m-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 b3f89b22ae370044dab313c56979b52203de59f73f2f65735be48a05065da0dc
MD5 ab82cd24fde9750e38bdc29616c012ab
BLAKE2b-256 50d674d2e41ee472be03eb84ce00ae73ab7dff4000cfc663095506dc1e497148

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pychoco-0.2.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 19.6 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for pychoco-0.2.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 742622a0d432aa1387303d3436aa869876f6a9631535feb664c97496dd8bfe1f
MD5 ea2848ce06c83aaadec8e6db9d32d88f
BLAKE2b-256 8f61e90c2f9cf213eb8cd9813969a98d160ff7c93cf94e079daf0884ddc6944f

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c89f2a09de350b86cd2cf55a6fd1c5ced203b75ce3ade1708176e327c901b519
MD5 5af701c153ab3d114c3414e697237415
BLAKE2b-256 9c271bc98d7e22afee93185756d9e75ec2c7a7a03af1366e4290cf27fc06277d

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp36-cp36m-macosx_14_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp36-cp36m-macosx_14_0_x86_64.whl
Algorithm Hash digest
SHA256 ccac070493beef765368dee3cc804b728db916850e988997e60cb55c2280499a
MD5 e371fd696c0fe3a7d2c51bb5013616a9
BLAKE2b-256 3c2623cc18b1c55af6594981590441b148c7f2b58dc286b82e50282a02d3fdbb

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp36-cp36m-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp36-cp36m-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 12222bf97e252cba180bb627ac8d30f7c473c939be37dd22fd16b23aa1aa7ccf
MD5 5004efa362c6573853212c46fcf7ba5c
BLAKE2b-256 dd7d540bcad784587ce2e5804ad9855a61b83c9d45484bd1eeea9d76a2e15de1

See more details on using hashes here.

File details

Details for the file pychoco-0.2.1-cp36-cp36m-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pychoco-0.2.1-cp36-cp36m-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 1bc1bb00eeb9a9b31b7bb2690cc2995f41403caccb70e03c79bdd9be1713e6aa
MD5 a28874316f602443a73dcd01372f9000
BLAKE2b-256 234a4dd1858877e95c462d2f0c1647c4e9b1271b9461af33f9286ffac18bd618

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page