Skip to main content

A python library to read and write CLDF datasets

Project description

pycldf

A python package to read and write CLDF datasets.

Build Status codecov Requirements Status PyPI

Writing CLDF

from pycldf import Wordlist, Source

dataset = Wordlist.in_dir('mydataset')
dataset.add_sources(Source('book', 'Meier2005', author='Hans Meier', year='2005', title='The Book'))
dataset.write(FormTable=[
    {
        'ID': '1', 
        'Form': 'word', 
        'Language_ID': 'abcd1234', 
        'Parameter_ID': '1277', 
        'Source': ['Meier2005[3-7]'],
    }])

results in

$ ls -1 mydataset/
forms.csv
sources.bib
Wordlist-metadata.json
  • mydataset/forms.csv
ID,Language_ID,Parameter_ID,Value,Segments,Comment,Source
1,abcd1234,1277,word,,,Meier2005[3-7]
  • mydataset/sources.bib
@book{Meier2005,
    author = {Meier, Hans},
    year = {2005},
    title = {The Book}
}
  • mydataset/Wordlist-metadata.json

Advanced writing

To add predefined CLDF components to a dataset, use the add_component method:

from pycldf import StructureDataset, term_uri

dataset = StructureDataset.in_dir('mydataset')
dataset.add_component('ParameterTable')
dataset.write(
    ValueTable=[{'ID': '1', 'Language_ID': 'abc', 'Parameter_ID': '1', 'Value': 'x'}],
	ParameterTable=[{'ID': '1', 'Name': 'Grammatical Feature'}])

It is also possible to add generic tables:

dataset.add_table('contributors.csv', term_uri('id'), term_uri('name'))

which can also be linked to other tables:

dataset.add_columns('ParameterTable', 'Contributor_ID')
dataset.add_foreign_key('ParameterTable', 'Contributor_ID', 'contributors.csv', 'ID')

Addressing tables and columns

Tables in a dataset can be referenced using a Dataset's __getitem__ method, passing

  • a full CLDF Ontology URI for the corresponding component,
  • the local name of the component in the CLDF Ontology,
  • the url of the table.

Columns in a dataset can be referenced using a Dataset's __getitem__ method, passing a tuple (<TABLE>, <COLUMN>) where <TABLE> specifies a table as explained above and <COLUMN> is

  • a full CLD Ontolgy URI used as propertyUrl of the column,
  • the name property of the column.

Reading CLDF

>>> from pycldf.dataset import Wordlist
>>> dataset = Wordlist.from_metadata('mydataset/Wordlist-metadata.json')
>>> print(dataset)
<cldf:v1.0:Wordlist at mydataset>
>>> forms = list(dataset['FormTable'])
>>> forms[0]
OrderedDict([('ID', '1'), ('Language_ID', 'abcd1234'), ('Parameter_ID', '1277'), ('Value', 'word'), ('Segments', []), ('Comment', None), ('Source', ['Meier2005[3-7]'])])
>>> refs = list(dataset.sources.expand_refs(forms[0]['Source']))
>>> refs
[<Reference Meier2005[3-7]>]
>>> print(refs[0].source)
Meier, Hans. 2005. The Book.

Command line usage

Installing the pycldf package will also install a command line interface cldf, which provides some sub-commands to manage CLDF datasets.

Summary statistics

$ cldf stats mydataset/Wordlist-metadata.json 
<cldf:v1.0:Wordlist at mydataset>

Path                   Type          Rows
---------------------  ----------  ------
forms.csv              Form Table       1
mydataset/sources.bib  Sources          1

Validation

By default, data files are read in strict-mode, i.e. invalid rows will result in an exception being raised. To validate a data file, it can be read in validating-mode.

For example the following output is generated

$ cldf validate mydataset/forms.csv
WARNING forms.csv: duplicate primary key: (u'1',)
WARNING forms.csv:4:Source missing source key: Mei2005

when reading the file

ID,Language_ID,Parameter_ID,Value,Segments,Comment,Source
1,abcd1234,1277,word,,,Meier2005[3-7]
1,stan1295,1277,hand,,,Meier2005[3-7]
2,stan1295,1277,hand,,,Mei2005[3-7]

See also

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycldf-1.13.0.tar.gz (33.5 kB view details)

Uploaded Source

Built Distribution

pycldf-1.13.0-py2.py3-none-any.whl (42.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pycldf-1.13.0.tar.gz.

File metadata

  • Download URL: pycldf-1.13.0.tar.gz
  • Upload date:
  • Size: 33.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.22.0 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.5.2

File hashes

Hashes for pycldf-1.13.0.tar.gz
Algorithm Hash digest
SHA256 eb319a580637b33def9cb62fd0458d07985d38154a89ad2e156b451ede1b99b2
MD5 0ab5e72f946acf4062655f9987107017
BLAKE2b-256 05f35a2dd20b6c2c46eceb40535e0a831613dbd265502c586383140cc18d8dd6

See more details on using hashes here.

File details

Details for the file pycldf-1.13.0-py2.py3-none-any.whl.

File metadata

  • Download URL: pycldf-1.13.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 42.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.22.0 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.5.2

File hashes

Hashes for pycldf-1.13.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 dc287600059864b4c9e66a35ab9c3cfe68da5f5cc1bb81b3c702367e3d94b754
MD5 f7e012adb2a94a2d29306bdbd47bc2bf
BLAKE2b-256 2700718f0f172ca1fcc211d321fbf42eeaffdedcc28f6163edc48f9b30fbf9d2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page