Skip to main content

A python library to read and write CLDF datasets

Project description

pycldf

A python package to read and write CLDF datasets.

Build Status codecov Requirements Status PyPI

Writing CLDF

from pycldf import Wordlist, Source

dataset = Wordlist.in_dir('mydataset')
dataset.add_sources(Source('book', 'Meier2005', author='Hans Meier', year='2005', title='The Book'))
dataset.write(FormTable=[
    {
        'ID': '1', 
        'Form': 'word', 
        'Language_ID': 'abcd1234', 
        'Parameter_ID': '1277', 
        'Source': ['Meier2005[3-7]'],
    }])

results in

$ ls -1 mydataset/
forms.csv
sources.bib
Wordlist-metadata.json
  • mydataset/forms.csv
ID,Language_ID,Parameter_ID,Value,Segments,Comment,Source
1,abcd1234,1277,word,,,Meier2005[3-7]
  • mydataset/sources.bib
@book{Meier2005,
    author = {Meier, Hans},
    year = {2005},
    title = {The Book}
}
  • mydataset/Wordlist-metadata.json

Advanced writing

To add predefined CLDF components to a dataset, use the add_component method:

from pycldf import StructureDataset, term_uri

dataset = StructureDataset.in_dir('mydataset')
dataset.add_component('ParameterTable')
dataset.write(
    ValueTable=[{'ID': '1', 'Language_ID': 'abc', 'Parameter_ID': '1', 'Value': 'x'}],
	ParameterTable=[{'ID': '1', 'Name': 'Grammatical Feature'}])

It is also possible to add generic tables:

dataset.add_table('contributors.csv', term_uri('id'), term_uri('name'))

which can also be linked to other tables:

dataset.add_columns('ParameterTable', 'Contributor_ID')
dataset.add_foreign_key('ParameterTable', 'Contributor_ID', 'contributors.csv', 'ID')

Addressing tables and columns

Tables in a dataset can be referenced using a Dataset's __getitem__ method, passing

  • a full CLDF Ontology URI for the corresponding component,
  • the local name of the component in the CLDF Ontology,
  • the url of the table.

Columns in a dataset can be referenced using a Dataset's __getitem__ method, passing a tuple (<TABLE>, <COLUMN>) where <TABLE> specifies a table as explained above and <COLUMN> is

  • a full CLD Ontolgy URI used as propertyUrl of the column,
  • the name property of the column.

Reading CLDF

>>> from pycldf.dataset import Wordlist
>>> dataset = Wordlist.from_metadata('mydataset/Wordlist-metadata.json')
>>> print(dataset)
<cldf:v1.0:Wordlist at mydataset>
>>> forms = list(dataset['FormTable'])
>>> forms[0]
OrderedDict([('ID', '1'), ('Language_ID', 'abcd1234'), ('Parameter_ID', '1277'), ('Value', 'word'), ('Segments', []), ('Comment', None), ('Source', ['Meier2005[3-7]'])])
>>> refs = list(dataset.sources.expand_refs(forms[0]['Source']))
>>> refs
[<Reference Meier2005[3-7]>]
>>> print(refs[0].source)
Meier, Hans. 2005. The Book.

Command line usage

Installing the pycldf package will also install a command line interface cldf, which provides some sub-commands to manage CLDF datasets.

Summary statistics

$ cldf stats mydataset/Wordlist-metadata.json 
<cldf:v1.0:Wordlist at mydataset>

Path                   Type          Rows
---------------------  ----------  ------
forms.csv              Form Table       1
mydataset/sources.bib  Sources          1

Validation

By default, data files are read in strict-mode, i.e. invalid rows will result in an exception being raised. To validate a data file, it can be read in validating-mode.

For example the following output is generated

$ cldf validate mydataset/forms.csv
WARNING forms.csv: duplicate primary key: (u'1',)
WARNING forms.csv:4:Source missing source key: Mei2005

when reading the file

ID,Language_ID,Parameter_ID,Value,Segments,Comment,Source
1,abcd1234,1277,word,,,Meier2005[3-7]
1,stan1295,1277,hand,,,Meier2005[3-7]
2,stan1295,1277,hand,,,Mei2005[3-7]

See also

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycldf-1.14.0.tar.gz (35.7 kB view details)

Uploaded Source

Built Distribution

pycldf-1.14.0-py2.py3-none-any.whl (44.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pycldf-1.14.0.tar.gz.

File metadata

  • Download URL: pycldf-1.14.0.tar.gz
  • Upload date:
  • Size: 35.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.22.0 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.5.2

File hashes

Hashes for pycldf-1.14.0.tar.gz
Algorithm Hash digest
SHA256 9ad3e383e0fa0a40e3a7b298e1a543023718941a4477867265ea97429a21d2b3
MD5 b14cf9e71fa0294fac3b3e17e195f1b6
BLAKE2b-256 866b5709780d28455968fc8a0249b41936062b7a4bf6a67e9432716eee74baaa

See more details on using hashes here.

File details

Details for the file pycldf-1.14.0-py2.py3-none-any.whl.

File metadata

  • Download URL: pycldf-1.14.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 44.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.22.0 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.5.2

File hashes

Hashes for pycldf-1.14.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 99e3098fe4ef8c8ba3dccbbafcff61bb57aba19502eaa2db882fd206c5afede7
MD5 53b2670ed816c062a60238814b30ad1b
BLAKE2b-256 28dee037daf521df33f7d23a9c3ddedfe71e1a5e691b695f868d3b1626209a85

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page