Skip to main content

A python library to read and write CLDF datasets

Project description

pycldf

A python package to read and write CLDF datasets.

Build Status codecov Requirements Status PyPI

Writing CLDF

from pycldf import Wordlist, Source

dataset = Wordlist.in_dir('mydataset')
dataset.add_sources(Source('book', 'Meier2005', author='Hans Meier', year='2005', title='The Book'))
dataset.write(FormTable=[
    {
        'ID': '1', 
        'Form': 'word', 
        'Language_ID': 'abcd1234', 
        'Parameter_ID': '1277', 
        'Source': ['Meier2005[3-7]'],
    }])

results in

$ ls -1 mydataset/
forms.csv
sources.bib
Wordlist-metadata.json
  • mydataset/forms.csv
ID,Language_ID,Parameter_ID,Value,Segments,Comment,Source
1,abcd1234,1277,word,,,Meier2005[3-7]
  • mydataset/sources.bib
@book{Meier2005,
    author = {Meier, Hans},
    year = {2005},
    title = {The Book}
}
  • mydataset/Wordlist-metadata.json

Advanced writing

To add predefined CLDF components to a dataset, use the add_component method:

from pycldf import StructureDataset, term_uri

dataset = StructureDataset.in_dir('mydataset')
dataset.add_component('ParameterTable')
dataset.write(
    ValueTable=[{'ID': '1', 'Language_ID': 'abc', 'Parameter_ID': '1', 'Value': 'x'}],
	ParameterTable=[{'ID': '1', 'Name': 'Grammatical Feature'}])

It is also possible to add generic tables:

dataset.add_table('contributors.csv', term_uri('id'), term_uri('name'))

which can also be linked to other tables:

dataset.add_columns('ParameterTable', 'Contributor_ID')
dataset.add_foreign_key('ParameterTable', 'Contributor_ID', 'contributors.csv', 'ID')

Addressing tables and columns

Tables in a dataset can be referenced using a Dataset's __getitem__ method, passing

  • a full CLDF Ontology URI for the corresponding component,
  • the local name of the component in the CLDF Ontology,
  • the url of the table.

Columns in a dataset can be referenced using a Dataset's __getitem__ method, passing a tuple (<TABLE>, <COLUMN>) where <TABLE> specifies a table as explained above and <COLUMN> is

  • a full CLD Ontolgy URI used as propertyUrl of the column,
  • the name property of the column.

Reading CLDF

>>> from pycldf.dataset import Wordlist
>>> dataset = Wordlist.from_metadata('mydataset/Wordlist-metadata.json')
>>> print(dataset)
<cldf:v1.0:Wordlist at mydataset>
>>> forms = list(dataset['FormTable'])
>>> forms[0]
OrderedDict([('ID', '1'), ('Language_ID', 'abcd1234'), ('Parameter_ID', '1277'), ('Value', 'word'), ('Segments', []), ('Comment', None), ('Source', ['Meier2005[3-7]'])])
>>> refs = list(dataset.sources.expand_refs(forms[0]['Source']))
>>> refs
[<Reference Meier2005[3-7]>]
>>> print(refs[0].source)
Meier, Hans. 2005. The Book.

Command line usage

Installing the pycldf package will also install a command line interface cldf, which provides some sub-commands to manage CLDF datasets.

Summary statistics

$ cldf stats mydataset/Wordlist-metadata.json 
<cldf:v1.0:Wordlist at mydataset>

Path                   Type          Rows
---------------------  ----------  ------
forms.csv              Form Table       1
mydataset/sources.bib  Sources          1

Validation

By default, data files are read in strict-mode, i.e. invalid rows will result in an exception being raised. To validate a data file, it can be read in validating-mode.

For example the following output is generated

$ cldf validate mydataset/forms.csv
WARNING forms.csv: duplicate primary key: (u'1',)
WARNING forms.csv:4:Source missing source key: Mei2005

when reading the file

ID,Language_ID,Parameter_ID,Value,Segments,Comment,Source
1,abcd1234,1277,word,,,Meier2005[3-7]
1,stan1295,1277,hand,,,Meier2005[3-7]
2,stan1295,1277,hand,,,Mei2005[3-7]

See also

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycldf-1.14.1.tar.gz (35.7 kB view details)

Uploaded Source

Built Distribution

pycldf-1.14.1-py2.py3-none-any.whl (44.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pycldf-1.14.1.tar.gz.

File metadata

  • Download URL: pycldf-1.14.1.tar.gz
  • Upload date:
  • Size: 35.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.22.0 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.5.2

File hashes

Hashes for pycldf-1.14.1.tar.gz
Algorithm Hash digest
SHA256 a75d4c9b487952f383b2fcd0a2f542bc14b114e80519120daef4c1dfad069b4b
MD5 f77d9493c96b5dda1a9426826380113b
BLAKE2b-256 ff5ceeb2c8376af3f7117f8b08642affb3fa4a04e1f034fc0355d9079738d703

See more details on using hashes here.

File details

Details for the file pycldf-1.14.1-py2.py3-none-any.whl.

File metadata

  • Download URL: pycldf-1.14.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 44.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.22.0 setuptools/39.2.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.5.2

File hashes

Hashes for pycldf-1.14.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 ad01dc77afb39615ecc33a698d24a12b2021421061723ae133f2adbd6828faaf
MD5 3257371bf738ba669a8ffec76299d23e
BLAKE2b-256 956427d4bd7f313b1e404865f5fc7183e03524479df09807865b1ffe9b104479

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page