Skip to main content

A python library to read and write CLDF datasets

Project description

pycldf

A python package to read and write CLDF datasets.

Build Status codecov Requirements Status PyPI

Writing CLDF

from pycldf import Wordlist, Source

dataset = Wordlist.in_dir('mydataset')
dataset.add_sources(Source('book', 'Meier2005', author='Hans Meier', year='2005', title='The Book'))
dataset.write(FormTable=[
    {
        'ID': '1', 
        'Form': 'word', 
        'Language_ID': 'abcd1234', 
        'Parameter_ID': '1277', 
        'Source': ['Meier2005[3-7]'],
    }])

results in

$ ls -1 mydataset/
forms.csv
sources.bib
Wordlist-metadata.json
  • mydataset/forms.csv
ID,Language_ID,Parameter_ID,Value,Segments,Comment,Source
1,abcd1234,1277,word,,,Meier2005[3-7]
  • mydataset/sources.bib
@book{Meier2005,
    author = {Meier, Hans},
    year = {2005},
    title = {The Book}
}
  • mydataset/Wordlist-metadata.json

Advanced writing

To add predefined CLDF components to a dataset, use the add_component method:

from pycldf import StructureDataset, term_uri

dataset = StructureDataset.in_dir('mydataset')
dataset.add_component('ParameterTable')
dataset.write(
    ValueTable=[{'ID': '1', 'Language_ID': 'abc', 'Parameter_ID': '1', 'Value': 'x'}],
	ParameterTable=[{'ID': '1', 'Name': 'Grammatical Feature'}])

It is also possible to add generic tables:

dataset.add_table('contributors.csv', term_uri('id'), term_uri('name'))

which can also be linked to other tables:

dataset.add_columns('ParameterTable', 'Contributor_ID')
dataset.add_foreign_key('ParameterTable', 'Contributor_ID', 'contributors.csv', 'ID')

Addressing tables and columns

Tables in a dataset can be referenced using a Dataset's __getitem__ method, passing

  • a full CLDF Ontology URI for the corresponding component,
  • the local name of the component in the CLDF Ontology,
  • the url of the table.

Columns in a dataset can be referenced using a Dataset's __getitem__ method, passing a tuple (<TABLE>, <COLUMN>) where <TABLE> specifies a table as explained above and <COLUMN> is

  • a full CLD Ontolgy URI used as propertyUrl of the column,
  • the name property of the column.

Reading CLDF

>>> from pycldf.dataset import Wordlist
>>> dataset = Wordlist.from_metadata('mydataset/Wordlist-metadata.json')
>>> print(dataset)
<cldf:v1.0:Wordlist at mydataset>
>>> forms = list(dataset['FormTable'])
>>> forms[0]
OrderedDict([('ID', '1'), ('Language_ID', 'abcd1234'), ('Parameter_ID', '1277'), ('Value', 'word'), ('Segments', []), ('Comment', None), ('Source', ['Meier2005[3-7]'])])
>>> refs = list(dataset.sources.expand_refs(forms[0]['Source']))
>>> refs
[<Reference Meier2005[3-7]>]
>>> print(refs[0].source)
Meier, Hans. 2005. The Book.

Command line usage

Installing the pycldf package will also install a command line interface cldf, which provides some sub-commands to manage CLDF datasets.

Summary statistics

$ cldf stats mydataset/Wordlist-metadata.json 
<cldf:v1.0:Wordlist at mydataset>

Path                   Type          Rows
---------------------  ----------  ------
forms.csv              Form Table       1
mydataset/sources.bib  Sources          1

Validation

By default, data files are read in strict-mode, i.e. invalid rows will result in an exception being raised. To validate a data file, it can be read in validating-mode.

For example the following output is generated

$ cldf validate mydataset/forms.csv
WARNING forms.csv: duplicate primary key: (u'1',)
WARNING forms.csv:4:Source missing source key: Mei2005

when reading the file

ID,Language_ID,Parameter_ID,Value,Segments,Comment,Source
1,abcd1234,1277,word,,,Meier2005[3-7]
1,stan1295,1277,hand,,,Meier2005[3-7]
2,stan1295,1277,hand,,,Mei2005[3-7]

See also

Project details


Release history Release notifications | RSS feed

This version

1.4.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycldf-1.4.0.tar.gz (31.2 kB view details)

Uploaded Source

Built Distribution

pycldf-1.4.0-py2.py3-none-any.whl (41.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pycldf-1.4.0.tar.gz.

File metadata

  • Download URL: pycldf-1.4.0.tar.gz
  • Upload date:
  • Size: 31.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for pycldf-1.4.0.tar.gz
Algorithm Hash digest
SHA256 881ce7bdb7123e7cb4d59ad2849e00ad0a19c8ff91d183e6012c1306162a54ae
MD5 c02a016e4ca065d0305b6da011469efd
BLAKE2b-256 2572e2d0184786dee0ea45c1b22bbc1f6575d2c223a049165d6613059c661822

See more details on using hashes here.

File details

Details for the file pycldf-1.4.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for pycldf-1.4.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 f1ca4e134b83416d1d48e08499c846f858844558da119306db6254add658c180
MD5 06be263906f07e00db720e9b0fdb8867
BLAKE2b-256 7968d4429a211d02870fd20198015034245d346eef18710a619bdbf56eb6e810

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page