Skip to main content

pyclustring is a python data mining library

Project description

JOSS

PyClustering

pyclustering is a Python, C++ data mining library (clustering algorithm, oscillatory networks, neural networks). The library provides Python and C++ implementations (C++ pyclustering library) of each algorithm or model. C++ pyclustering library is a part of pyclustering and supported for Linux, Windows and MacOS operating systems.

Official repository: https://github.com/annoviko/pyclustering/

Documentation: https://pyclustering.github.io/docs/0.10.1/html/

Dependencies

Required packages: scipy, matplotlib, numpy, Pillow

Python version: >=3.6 (32-bit, 64-bit)

C++ version: >= 14 (32-bit, 64-bit)

Performance

Each algorithm is implemented using Python and C/C++ language, if your platform is not supported then Python implementation is used, otherwise C/C++. Implementation can be chosen by ccore flag (by default it is always ‘True’ and it means that C/C++ is used), for example:

# As by default - C/C++ part of the library is used
xmeans_instance_1 = xmeans(data_points, start_centers, 20, ccore=True);

# The same - C/C++ part of the library is used by default
xmeans_instance_2 = xmeans(data_points, start_centers, 20);

# Switch off core - Python is used
xmeans_instance_3 = xmeans(data_points, start_centers, 20, ccore=False);

Installation

Installation using pip3 tool:

$ pip3 install pyclustering

Manual installation from official repository using Makefile:

# get sources of the pyclustering library, for example, from repository
$ mkdir pyclustering
$ cd pyclustering/
$ git clone https://github.com/annoviko/pyclustering.git .

# compile CCORE library (core of the pyclustering library).
$ cd ccore/
$ make ccore_64bit      # build for 64-bit OS

# $ make ccore_32bit    # build for 32-bit OS

# return to parent folder of the pyclustering library
$ cd ../

# install pyclustering library
$ python3 setup.py install

# optionally - test the library
$ python3 setup.py test

Manual installation using CMake:

# get sources of the pyclustering library, for example, from repository
$ mkdir pyclustering
$ cd pyclustering/
$ git clone https://github.com/annoviko/pyclustering.git .

# generate build files.
$ mkdir build
$ cmake ..

# build pyclustering-shared target depending on what was generated (Makefile or MSVC solution)
# if Makefile has been generated then
$ make pyclustering-shared

# return to parent folder of the pyclustering library
$ cd ../

# install pyclustering library
$ python3 setup.py install

# optionally - test the library
$ python3 setup.py test

Manual installation using Microsoft Visual Studio solution:

  1. Clone repository from: https://github.com/annoviko/pyclustering.git

  2. Open folder pyclustering/ccore

  3. Open Visual Studio project ccore.sln

  4. Select solution platform: x86 or x64

  5. Build pyclustering-shared project.

  6. Add pyclustering folder to python path or install it using setup.py

# install pyclustering library
$ python3 setup.py install

# optionally - test the library
$ python3 setup.py test

Proposals, Questions, Bugs

In case of any questions, proposals or bugs related to the pyclustering please contact to pyclustering@yandex.ru.

Issue tracker: https://github.com/annoviko/pyclustering/issues

Library Content

Clustering algorithms (module pyclustering.cluster):

  • Agglomerative (pyclustering.cluster.agglomerative);

  • BANG (pyclustering.cluster.bang);

  • BIRCH (pyclustering.cluster.birch);

  • BSAS (pyclustering.cluster.bsas);

  • CLARANS (pyclustering.cluster.clarans);

  • CLIQUE (pyclustering.cluster.clique);

  • CURE (pyclustering.cluster.cure);

  • DBSCAN (pyclustering.cluster.dbscan);

  • Elbow (pyclustering.cluster.elbow);

  • EMA (pyclustering.cluster.ema);

  • Fuzzy C-Means (pyclustering.cluster.fcm);

  • GA (Genetic Algorithm) (pyclustering.cluster.ga);

  • G-Means (pyclustering.cluster.gmeans);

  • HSyncNet (pyclustering.cluster.hsyncnet);

  • K-Means (pyclustering.cluster.kmeans);

  • K-Means++ (pyclustering.cluster.center_initializer);

  • K-Medians (pyclustering.cluster.kmedians);

  • K-Medoids (pyclustering.cluster.kmedoids);

  • MBSAS (pyclustering.cluster.mbsas);

  • OPTICS (pyclustering.cluster.optics);

  • ROCK (pyclustering.cluster.rock);

  • Silhouette (pyclustering.cluster.silhouette);

  • SOM-SC (pyclustering.cluster.somsc);

  • SyncNet (pyclustering.cluster.syncnet);

  • Sync-SOM (pyclustering.cluster.syncsom);

  • TTSAS (pyclustering.cluster.ttsas);

  • X-Means (pyclustering.cluster.xmeans);

Oscillatory networks and neural networks (module pyclustering.nnet):

  • Oscillatory network based on Hodgkin-Huxley model (pyclustering.nnet.hhn);

  • fSync: Oscillatory Network based on Landau-Stuart equation and Kuramoto model (pyclustering.nnet.fsync);

  • Hysteresis Oscillatory Network (pyclustering.nnet.hysteresis);

  • LEGION: Local Excitatory Global Inhibitory Oscillatory Network (pyclustering.nnet.legion);

  • PCNN: Pulse-Coupled Neural Network (pyclustering.nnet.pcnn);

  • SOM: Self-Organized Map (pyclustering.nnet.som);

  • Sync: Oscillatory Network based on Kuramoto model (pyclustering.nnet.sync);

  • SyncPR: Oscillatory Network based on Kuramoto model for pattern recognition (pyclustering.nnet.syncpr);

  • SyncSegm: Oscillatory Network based on Kuramoto model for image segmentation (pyclustering.nnet.syncsegm);

Graph Coloring Algorithms (module pyclustering.gcolor):

  • DSATUR (pyclustering.gcolor.dsatur);

  • Hysteresis Oscillatory Network for graph coloring (pyclustering.gcolor.hysteresis);

  • Sync: Oscillatory Network based on Kuramoto model for graph coloring (pyclustering.gcolor.sync);

Containers (module pyclustering.container):

  • CF-Tree (pyclustering.container.cftree);

  • KD-Tree (pyclustering.container.kdtree);

Cite the Library

If you are using pyclustering library in a scientific paper, please, cite the library:

Novikov, A., 2019. PyClustering: Data Mining Library. Journal of Open Source Software, 4(36), p.1230. Available at: http://dx.doi.org/10.21105/joss.01230.

BibTeX entry:

@article{Novikov2019,
    doi         = {10.21105/joss.01230},
    url         = {https://doi.org/10.21105/joss.01230},
    year        = 2019,
    month       = {apr},
    publisher   = {The Open Journal},
    volume      = {4},
    number      = {36},
    pages       = {1230},
    author      = {Andrei Novikov},
    title       = {{PyClustering}: Data Mining Library},
    journal     = {Journal of Open Source Software}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyclustering-0.10.1.2.tar.gz (2.6 MB view details)

Uploaded Source

File details

Details for the file pyclustering-0.10.1.2.tar.gz.

File metadata

  • Download URL: pyclustering-0.10.1.2.tar.gz
  • Upload date:
  • Size: 2.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.22.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.53.0 CPython/3.8.2

File hashes

Hashes for pyclustering-0.10.1.2.tar.gz
Algorithm Hash digest
SHA256 8a98fd299fcc1e21b7b7c963275162dd7194aa3d921aa66d313775597cf833d1
MD5 8d585e39dd2a33ef691f2087a237f85d
BLAKE2b-256 4bcf6c1183d0c1e76df398d0808f78cabaedd87a1ca7548b9b03d51620ff55eb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page