Skip to main content

pyclustring is a python data mining library

Project description

Build Status Linux Build Status Win Coverage Status Code Quality Documentation DOI

PyClustering

pyclustering is a Python, C++ data mining library (clustering algorithm, oscillatory networks, neural networks). The library provides Python and C++ implementations (via CCORE library) of each algorithm or model. CCORE library is a part of pyclustering and supported only for 64-bit Linux and 64-bit Windows operating systems.

Dependencies

Required packages: scipy, matplotlib, numpy, PIL

Python version: >=3.4 (64-bit)

C++ version: >= 14 (64-bit)

Installation

Installation using pip3 tool:

$ pip3 install pyclustering

Manual installation from official repository:

# get sources of the pyclustering library, for example, from repository
$ mkdir pyclustering
$ cd pyclustering/
$ git clone https://github.com/annoviko/pyclustering.git .

# compile CCORE library (core of the pyclustering library).
$ cd pyclustering/ccore
$ make ccore

# return to parent folder of the pyclustering library
cd ../

# add current folder to python path
PYTHONPATH=`pwd`
export PYTHONPATH=${PYTHONPATH}

Proposals, Questions, Bugs

In case of any questions, proposals or bugs related to the pyclustering please contact to pyclustering@yandex.ru.

Issue tracker: https://github.com/annoviko/pyclustering

Library Content

Clustering algorithms (module pyclustering.cluster):

  • Agglomerative (pyclustering.cluster.agglomerative);

  • BIRCH (pyclustering.cluster.birch);

  • CLARANS (pyclustering.cluster.clarans);

  • CURE (pyclustering.cluster.cure);

  • DBSCAN (pyclustering.cluster.dbscan);

  • EMA (pyclustering.cluster.ema);

  • GA (Genetic Algorithm) (pyclustering.cluster.ga);

  • HSyncNet (pyclustering.cluster.hsyncnet);

  • K-Means (pyclustering.cluster.kmeans);

  • K-Means++ (pyclustering.cluster.center_initializer);

  • K-Medians (pyclustering.cluster.kmedians);

  • K-Medoids (PAM) (pyclustering.cluster.kmedoids);

  • OPTICS (pyclustering.cluster.optics);

  • ROCK (pyclustering.cluster.rock);

  • SOM-SC (pyclustering.cluster.somsc);

  • SyncNet (pyclustering.cluster.syncnet);

  • Sync-SOM (pyclustering.cluster.syncsom);

  • X-Means (pyclustering.cluster.xmeans);

Oscillatory networks and neural networks (module pyclustering.nnet):

  • Oscillatory network based on Hodgkin-Huxley model (pyclustering.nnet.hhn);

  • fSync: Oscillatory Network based on Landau-Stuart equation and Kuramoto model (pyclustering.nnet.fsync);

  • Hysteresis Oscillatory Network (pyclustering.nnet.hysteresis);

  • LEGION: Local Excitatory Global Inhibitory Oscillatory Network (pyclustering.nnet.legion);

  • PCNN: Pulse-Coupled Neural Network (pyclustering.nnet.pcnn);

  • SOM: Self-Organized Map (pyclustering.nnet.som);

  • Sync: Oscillatory Network based on Kuramoto model (pyclustering.nnet.sync);

  • SyncPR: Oscillatory Network based on Kuramoto model for pattern recognition (pyclustering.nnet.syncpr);

  • SyncSegm: Oscillatory Network based on Kuramoto model for image segmentation (pyclustering.nnet.syncsegm);

Graph Coloring Algorithms (module pyclustering.gcolor):

  • DSATUR (pyclustering.gcolor.dsatur);

  • Hysteresis Oscillatory Network for graph coloring (pyclustering.gcolor.hysteresis);

  • Sync: Oscillatory Network based on Kuramoto model for graph coloring (pyclustering.gcolor.sync);

Travelling Salesman Problem Algorithms (module pyclustering.tsp):

  • AntColony (pyclustering.tsp.antcolony);

Containers (module pyclustering.container):

  • CF-Tree (pyclustering.container.cftree);

  • KD-Tree (pyclustering.container.kdtree);

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyclustering-0.7.1.tar.gz (1.4 MB view details)

Uploaded Source

File details

Details for the file pyclustering-0.7.1.tar.gz.

File metadata

File hashes

Hashes for pyclustering-0.7.1.tar.gz
Algorithm Hash digest
SHA256 30e410fb28d5df831ad5aa96c0bbd4a2d2c5fc2b846f97f9eab0c143c9dd6d8e
MD5 bf12d3a2ca64a601874fdf52eeb6a934
BLAKE2b-256 08090b13683133a3019d436434901beb9a33397f2181c0c0ff60af49e53408fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page