pyclustring is a python data mining library
Project description
PyClustering
pyclustering is a Python, C++ data mining library (clustering algorithm, oscillatory networks, neural networks). The library provides Python and C++ implementations (via CCORE library) of each algorithm or model. CCORE library is a part of pyclustering and supported only for 64-bit Linux and 64-bit Windows operating systems.
Dependencies
Required packages: scipy, matplotlib, numpy, PIL
Python version: >=3.4 (64-bit)
C++ version: >= 14 (64-bit)
Installation
Installation using pip3 tool:
$ pip3 install pyclustering
Manual installation from official repository:
# get sources of the pyclustering library, for example, from repository
$ mkdir pyclustering
$ cd pyclustering/
$ git clone https://github.com/annoviko/pyclustering.git .
# compile CCORE library (core of the pyclustering library).
$ cd pyclustering/ccore
$ make ccore
# return to parent folder of the pyclustering library
cd ../
# add current folder to python path
PYTHONPATH=`pwd`
export PYTHONPATH=${PYTHONPATH}
Proposals, Questions, Bugs
In case of any questions, proposals or bugs related to the pyclustering please contact to pyclustering@yandex.ru.
Issue tracker: https://github.com/annoviko/pyclustering
Library Content
Clustering algorithms (module pyclustering.cluster):
Agglomerative (pyclustering.cluster.agglomerative);
BIRCH (pyclustering.cluster.birch);
CLARANS (pyclustering.cluster.clarans);
CURE (pyclustering.cluster.cure);
DBSCAN (pyclustering.cluster.dbscan);
EMA (pyclustering.cluster.ema);
GA (Genetic Algorithm) (pyclustering.cluster.ga);
HSyncNet (pyclustering.cluster.hsyncnet);
K-Means (pyclustering.cluster.kmeans);
K-Means++ (pyclustering.cluster.center_initializer);
K-Medians (pyclustering.cluster.kmedians);
K-Medoids (PAM) (pyclustering.cluster.kmedoids);
OPTICS (pyclustering.cluster.optics);
ROCK (pyclustering.cluster.rock);
SOM-SC (pyclustering.cluster.somsc);
SyncNet (pyclustering.cluster.syncnet);
Sync-SOM (pyclustering.cluster.syncsom);
X-Means (pyclustering.cluster.xmeans);
Oscillatory networks and neural networks (module pyclustering.nnet):
Oscillatory network based on Hodgkin-Huxley model (pyclustering.nnet.hhn);
fSync: Oscillatory Network based on Landau-Stuart equation and Kuramoto model (pyclustering.nnet.fsync);
Hysteresis Oscillatory Network (pyclustering.nnet.hysteresis);
LEGION: Local Excitatory Global Inhibitory Oscillatory Network (pyclustering.nnet.legion);
PCNN: Pulse-Coupled Neural Network (pyclustering.nnet.pcnn);
SOM: Self-Organized Map (pyclustering.nnet.som);
Sync: Oscillatory Network based on Kuramoto model (pyclustering.nnet.sync);
SyncPR: Oscillatory Network based on Kuramoto model for pattern recognition (pyclustering.nnet.syncpr);
SyncSegm: Oscillatory Network based on Kuramoto model for image segmentation (pyclustering.nnet.syncsegm);
Graph Coloring Algorithms (module pyclustering.gcolor):
DSATUR (pyclustering.gcolor.dsatur);
Hysteresis Oscillatory Network for graph coloring (pyclustering.gcolor.hysteresis);
Sync: Oscillatory Network based on Kuramoto model for graph coloring (pyclustering.gcolor.sync);
Travelling Salesman Problem Algorithms (module pyclustering.tsp):
AntColony (pyclustering.tsp.antcolony);
Containers (module pyclustering.container):
CF-Tree (pyclustering.container.cftree);
KD-Tree (pyclustering.container.kdtree);
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file pyclustering-0.7.1.tar.gz
.
File metadata
- Download URL: pyclustering-0.7.1.tar.gz
- Upload date:
- Size: 1.4 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 30e410fb28d5df831ad5aa96c0bbd4a2d2c5fc2b846f97f9eab0c143c9dd6d8e |
|
MD5 | bf12d3a2ca64a601874fdf52eeb6a934 |
|
BLAKE2b-256 | 08090b13683133a3019d436434901beb9a33397f2181c0c0ff60af49e53408fd |