Skip to main content

pyclustring is a python data mining library

Project description

Build Status Linux Build Status Win Coverage Status Code Quality Documentation DOI

PyClustering

pyclustering is a Python, C++ data mining library (clustering algorithm, oscillatory networks, neural networks). The library provides Python and C++ implementations (via CCORE library) of each algorithm or model. CCORE library is a part of pyclustering and supported only for 64-bit Linux and 64-bit Windows operating systems.

Dependencies

Required packages: scipy, matplotlib, numpy, PIL

Python version: >=3.4 (64-bit)

C++ version: >= 14 (64-bit)

Installation

Installation using pip3 tool:

$ pip3 install pyclustering

Manual installation from official repository:

# get sources of the pyclustering library, for example, from repository
$ mkdir pyclustering
$ cd pyclustering/
$ git clone https://github.com/annoviko/pyclustering.git .

# compile CCORE library (core of the pyclustering library).
$ cd pyclustering/ccore
$ make ccore

# return to parent folder of the pyclustering library
cd ../

# add current folder to python path
PYTHONPATH=`pwd`
export PYTHONPATH=${PYTHONPATH}

Proposals, Questions, Bugs

In case of any questions, proposals or bugs related to the pyclustering please contact to pyclustering@yandex.ru.

Issue tracker: https://github.com/annoviko/pyclustering

Library Content

Clustering algorithms (module pyclustering.cluster):

  • Agglomerative (pyclustering.cluster.agglomerative);

  • BIRCH (pyclustering.cluster.birch);

  • CLARANS (pyclustering.cluster.clarans);

  • CURE (pyclustering.cluster.cure);

  • DBSCAN (pyclustering.cluster.dbscan);

  • EMA (pyclustering.cluster.ema);

  • GA (Genetic Algorithm) (pyclustering.cluster.ga);

  • HSyncNet (pyclustering.cluster.hsyncnet);

  • K-Means (pyclustering.cluster.kmeans);

  • K-Means++ (pyclustering.cluster.center_initializer);

  • K-Medians (pyclustering.cluster.kmedians);

  • K-Medoids (PAM) (pyclustering.cluster.kmedoids);

  • OPTICS (pyclustering.cluster.optics);

  • ROCK (pyclustering.cluster.rock);

  • SOM-SC (pyclustering.cluster.somsc);

  • SyncNet (pyclustering.cluster.syncnet);

  • Sync-SOM (pyclustering.cluster.syncsom);

  • X-Means (pyclustering.cluster.xmeans);

Oscillatory networks and neural networks (module pyclustering.nnet):

  • Oscillatory network based on Hodgkin-Huxley model (pyclustering.nnet.hhn);

  • fSync: Oscillatory Network based on Landau-Stuart equation and Kuramoto model (pyclustering.nnet.fsync);

  • Hysteresis Oscillatory Network (pyclustering.nnet.hysteresis);

  • LEGION: Local Excitatory Global Inhibitory Oscillatory Network (pyclustering.nnet.legion);

  • PCNN: Pulse-Coupled Neural Network (pyclustering.nnet.pcnn);

  • SOM: Self-Organized Map (pyclustering.nnet.som);

  • Sync: Oscillatory Network based on Kuramoto model (pyclustering.nnet.sync);

  • SyncPR: Oscillatory Network based on Kuramoto model for pattern recognition (pyclustering.nnet.syncpr);

  • SyncSegm: Oscillatory Network based on Kuramoto model for image segmentation (pyclustering.nnet.syncsegm);

Graph Coloring Algorithms (module pyclustering.gcolor):

  • DSATUR (pyclustering.gcolor.dsatur);

  • Hysteresis Oscillatory Network for graph coloring (pyclustering.gcolor.hysteresis);

  • Sync: Oscillatory Network based on Kuramoto model for graph coloring (pyclustering.gcolor.sync);

Travelling Salesman Problem Algorithms (module pyclustering.tsp):

  • AntColony (pyclustering.tsp.antcolony);

Containers (module pyclustering.container):

  • CF-Tree (pyclustering.container.cftree);

  • KD-Tree (pyclustering.container.kdtree);

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyclustering-0.7.2.tar.gz (1.4 MB view details)

Uploaded Source

File details

Details for the file pyclustering-0.7.2.tar.gz.

File metadata

File hashes

Hashes for pyclustering-0.7.2.tar.gz
Algorithm Hash digest
SHA256 153b236febdf2ce0f41122e3f1a9e0788340729c53c12be56282db85a2a81792
MD5 67149ef7d4b44d75c1febe7899635a5f
BLAKE2b-256 4cae3f884451ed99e47b45535bd8699212cc023092ad8109d1a34cf9b0b2ca9f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page