Skip to main content

pyclustring is a python data mining library

Project description

Documentation JOSS

PyClustering

pyclustering is a Python, C++ data mining library (clustering algorithm, oscillatory networks, neural networks). The library provides Python and C++ implementations (via CCORE library) of each algorithm or model. CCORE library is a part of pyclustering and supported for Linux, Windows and MacOS operating systems.

Official repository: https://github.com/annoviko/pyclustering/

Documentation: https://pyclustering.github.io/docs/0.9.0/html/index.html

Dependencies

Required packages: scipy, matplotlib, numpy, Pillow

Python version: >=3.5 (32-bit, 64-bit)

C++ version: >= 14 (32-bit, 64-bit)

Performance

Each algorithm is implemented using Python and C/C++ language, if your platform is not supported then Python implementation is used, otherwise C/C++. Implementation can be chosen by ccore flag (by default it is always ‘True’ and it means that C/C++ is used), for example:

# As by default - C/C++ is used
xmeans_instance_1 = xmeans(data_points, start_centers, 20, ccore=True);

# The same - C/C++ is used by default
xmeans_instance_2 = xmeans(data_points, start_centers, 20);

# Switch off core - Python is used
xmeans_instance_3 = xmeans(data_points, start_centers, 20, ccore=False);

Installation

Installation using pip3 tool:

$ pip3 install pyclustering

Manual installation from official repository using GCC:

# get sources of the pyclustering library, for example, from repository
$ mkdir pyclustering
$ cd pyclustering/
$ git clone https://github.com/annoviko/pyclustering.git .

# compile CCORE library (core of the pyclustering library).
$ cd ccore/
$ make ccore_x64        # build for 64-bit OS

# $ make ccore_x86      # build for 32-bit OS
# $ make ccore          # build for both (32 and 64-bit)

# return to parent folder of the pyclustering library
cd ../

# add current folder to python path
PYTHONPATH=`pwd`
export PYTHONPATH=${PYTHONPATH}

Manual installation using Visual Studio:

  1. Clone repository from: https://github.com/annoviko/pyclustering.git

  2. Open folder pyclustering/ccore

  3. Open Visual Studio project ccore.sln

  4. Select solution platform: ‘x86’ or ‘x64’

  5. Build ‘ccore’ project.

  6. Add pyclustering folder to python path.

Proposals, Questions, Bugs

In case of any questions, proposals or bugs related to the pyclustering please contact to pyclustering@yandex.ru.

Issue tracker: https://github.com/annoviko/pyclustering/issues

Library Content

Clustering algorithms (module pyclustering.cluster):

  • Agglomerative (pyclustering.cluster.agglomerative);

  • BANG (pyclustering.cluster.bang);

  • BIRCH (pyclustering.cluster.birch);

  • BSAS (pyclustering.cluster.bsas);

  • CLARANS (pyclustering.cluster.clarans);

  • CLIQUE (pyclustering.cluster.clique);

  • CURE (pyclustering.cluster.cure);

  • DBSCAN (pyclustering.cluster.dbscan);

  • Elbow (pyclustering.cluster.elbow);

  • EMA (pyclustering.cluster.ema);

  • Fuzzy C-Means (pyclustering.cluster.fcm);

  • GA (Genetic Algorithm) (pyclustering.cluster.ga);

  • HSyncNet (pyclustering.cluster.hsyncnet);

  • K-Means (pyclustering.cluster.kmeans);

  • K-Means++ (pyclustering.cluster.center_initializer);

  • K-Medians (pyclustering.cluster.kmedians);

  • K-Medoids (pyclustering.cluster.kmedoids);

  • MBSAS (pyclustering.cluster.mbsas);

  • OPTICS (pyclustering.cluster.optics);

  • ROCK (pyclustering.cluster.rock);

  • Silhouette (pyclustering.cluster.silhouette);

  • SOM-SC (pyclustering.cluster.somsc);

  • SyncNet (pyclustering.cluster.syncnet);

  • Sync-SOM (pyclustering.cluster.syncsom);

  • TTSAS (pyclustering.cluster.ttsas);

  • X-Means (pyclustering.cluster.xmeans);

Oscillatory networks and neural networks (module pyclustering.nnet):

  • Oscillatory network based on Hodgkin-Huxley model (pyclustering.nnet.hhn);

  • fSync: Oscillatory Network based on Landau-Stuart equation and Kuramoto model (pyclustering.nnet.fsync);

  • Hysteresis Oscillatory Network (pyclustering.nnet.hysteresis);

  • LEGION: Local Excitatory Global Inhibitory Oscillatory Network (pyclustering.nnet.legion);

  • PCNN: Pulse-Coupled Neural Network (pyclustering.nnet.pcnn);

  • SOM: Self-Organized Map (pyclustering.nnet.som);

  • Sync: Oscillatory Network based on Kuramoto model (pyclustering.nnet.sync);

  • SyncPR: Oscillatory Network based on Kuramoto model for pattern recognition (pyclustering.nnet.syncpr);

  • SyncSegm: Oscillatory Network based on Kuramoto model for image segmentation (pyclustering.nnet.syncsegm);

Graph Coloring Algorithms (module pyclustering.gcolor):

  • DSATUR (pyclustering.gcolor.dsatur);

  • Hysteresis Oscillatory Network for graph coloring (pyclustering.gcolor.hysteresis);

  • Sync: Oscillatory Network based on Kuramoto model for graph coloring (pyclustering.gcolor.sync);

Containers (module pyclustering.container):

  • CF-Tree (pyclustering.container.cftree);

  • KD-Tree (pyclustering.container.kdtree);

Cite the Library

If you are using pyclustering library in a scientific paper, please, cite the library:

Novikov, A., 2019. PyClustering: Data Mining Library. Journal of Open Source Software, 4(36), p.1230. Available at: http://dx.doi.org/10.21105/joss.01230.

BibTeX entry:

@article{Novikov2019,
    doi         = {10.21105/joss.01230},
    url         = {https://doi.org/10.21105/joss.01230},
    year        = 2019,
    month       = {apr},
    publisher   = {The Open Journal},
    volume      = {4},
    number      = {36},
    pages       = {1230},
    author      = {Andrei Novikov},
    title       = {{PyClustering}: Data Mining Library},
    journal     = {Journal of Open Source Software}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyclustering-0.9.0.tar.gz (2.5 MB view details)

Uploaded Source

File details

Details for the file pyclustering-0.9.0.tar.gz.

File metadata

  • Download URL: pyclustering-0.9.0.tar.gz
  • Upload date:
  • Size: 2.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.5.2

File hashes

Hashes for pyclustering-0.9.0.tar.gz
Algorithm Hash digest
SHA256 26bbce16016114a4d59b53ed9106145e89eb50c7bd39b83a5ec9a97e7252ed05
MD5 b3df8fd940cb6afdb7bfc457dfa7c9fa
BLAKE2b-256 38d521bf39b855a8720173541fda04a8fdab087595d5317e7043d72cd0de08e8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page