Multi-class confusion matrix library in Python
Project description
Table of contents
- Overview
- Installation
- Usage
- Document
- Try PyCM in Your Browser
- Issues & Bug Reports
- Todo
- Outputs
- Dependencies
- Contribution
- References
- Cite
- Authors
- License
- Show Your Support
- Changelog
- Code of Conduct
Overview
PyCM is a multi-class confusion matrix library written in Python that supports both input data vectors and direct matrix, and a proper tool for post-classification model evaluation that supports most classes and overall statistics parameters. PyCM is the swiss-army knife of confusion matrices, targeted mainly at data scientists that need a broad array of metrics for predictive models and accurate evaluation of a large variety of classifiers.
Fig1. ConfusionMatrix Block Diagram
Open Hub | |
PyPI Counter | |
Github Stars |
Branch | master | dev |
CI |
Code Quality |
Installation
⚠️ PyCM 2.4 is the last version to support Python 2.7 & Python 3.4
⚠️ Plotting capability requires Matplotlib (>= 3.0.0) or Seaborn (>= 0.9.1)
Source code
- Download Version 3.4 or Latest Source
- Run
pip install -r requirements.txt
orpip3 install -r requirements.txt
(Need root access) - Run
python3 setup.py install
orpython setup.py install
(Need root access)
PyPI
- Check Python Packaging User Guide
- Run
pip install pycm==3.4
orpip3 install pycm==3.4
(Need root access)
Conda
- Check Conda Managing Package
- Update Conda using
conda update conda
(Need root access) - Run
conda install -c sepandhaghighi pycm
(Need root access)
Easy install
- Run
easy_install --upgrade pycm
(Need root access)
MATLAB
- Download and install MATLAB (>=8.5, 64/32 bit)
- Download and install Python3.x (>=3.5, 64/32 bit)
- Select
Add to PATH
option - Select
Install pip
option
- Select
- Run
pip install pycm
orpip3 install pycm
(Need root access) - Configure Python interpreter
>> pyversion PYTHON_EXECUTABLE_FULL_PATH
- Visit MATLAB Examples
Usage
From vector
>>> from pycm import *
>>> y_actu = [2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2] # or y_actu = numpy.array([2, 0, 2, 2, 0, 1, 1, 2, 2, 0, 1, 2])
>>> y_pred = [0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2] # or y_pred = numpy.array([0, 0, 2, 1, 0, 2, 1, 0, 2, 0, 2, 2])
>>> cm = ConfusionMatrix(actual_vector=y_actu, predict_vector=y_pred) # Create CM From Data
>>> cm.classes
[0, 1, 2]
>>> cm.table
{0: {0: 3, 1: 0, 2: 0}, 1: {0: 0, 1: 1, 2: 2}, 2: {0: 2, 1: 1, 2: 3}}
>>> print(cm)
Predict 0 1 2
Actual
0 3 0 0
1 0 1 2
2 2 1 3
Overall Statistics :
95% CI (0.30439,0.86228)
ACC Macro 0.72222
ARI 0.09206
AUNP 0.66667
AUNU 0.69444
Bangdiwala B 0.37255
Bennett S 0.375
CBA 0.47778
CSI 0.17778
Chi-Squared 6.6
Chi-Squared DF 4
Conditional Entropy 0.95915
Cramer V 0.5244
Cross Entropy 1.59352
F1 Macro 0.56515
F1 Micro 0.58333
FNR Macro 0.38889
FNR Micro 0.41667
FPR Macro 0.22222
FPR Micro 0.20833
Gwet AC1 0.38931
Hamming Loss 0.41667
Joint Entropy 2.45915
KL Divergence 0.09352
Kappa 0.35484
Kappa 95% CI (-0.07708,0.78675)
Kappa No Prevalence 0.16667
Kappa Standard Error 0.22036
Kappa Unbiased 0.34426
Krippendorff Alpha 0.37158
Lambda A 0.16667
Lambda B 0.42857
Mutual Information 0.52421
NIR 0.5
Overall ACC 0.58333
Overall CEN 0.46381
Overall J (1.225,0.40833)
Overall MCC 0.36667
Overall MCEN 0.51894
Overall RACC 0.35417
Overall RACCU 0.36458
P-Value 0.38721
PPV Macro 0.56667
PPV Micro 0.58333
Pearson C 0.59568
Phi-Squared 0.55
RCI 0.34947
RR 4.0
Reference Entropy 1.5
Response Entropy 1.48336
SOA1(Landis & Koch) Fair
SOA2(Fleiss) Poor
SOA3(Altman) Fair
SOA4(Cicchetti) Poor
SOA5(Cramer) Relatively Strong
SOA6(Matthews) Weak
Scott PI 0.34426
Standard Error 0.14232
TNR Macro 0.77778
TNR Micro 0.79167
TPR Macro 0.61111
TPR Micro 0.58333
Zero-one Loss 5
Class Statistics :
Classes 0 1 2
ACC(Accuracy) 0.83333 0.75 0.58333
AGF(Adjusted F-score) 0.9136 0.53995 0.5516
AGM(Adjusted geometric mean) 0.83729 0.692 0.60712
AM(Difference between automatic and manual classification) 2 -1 -1
AUC(Area under the ROC curve) 0.88889 0.61111 0.58333
AUCI(AUC value interpretation) Very Good Fair Poor
AUPR(Area under the PR curve) 0.8 0.41667 0.55
BCD(Bray-Curtis dissimilarity) 0.08333 0.04167 0.04167
BM(Informedness or bookmaker informedness) 0.77778 0.22222 0.16667
CEN(Confusion entropy) 0.25 0.49658 0.60442
DOR(Diagnostic odds ratio) None 4.0 2.0
DP(Discriminant power) None 0.33193 0.16597
DPI(Discriminant power interpretation) None Poor Poor
ERR(Error rate) 0.16667 0.25 0.41667
F0.5(F0.5 score) 0.65217 0.45455 0.57692
F1(F1 score - harmonic mean of precision and sensitivity) 0.75 0.4 0.54545
F2(F2 score) 0.88235 0.35714 0.51724
FDR(False discovery rate) 0.4 0.5 0.4
FN(False negative/miss/type 2 error) 0 2 3
FNR(Miss rate or false negative rate) 0.0 0.66667 0.5
FOR(False omission rate) 0.0 0.2 0.42857
FP(False positive/type 1 error/false alarm) 2 1 2
FPR(Fall-out or false positive rate) 0.22222 0.11111 0.33333
G(G-measure geometric mean of precision and sensitivity) 0.7746 0.40825 0.54772
GI(Gini index) 0.77778 0.22222 0.16667
GM(G-mean geometric mean of specificity and sensitivity) 0.88192 0.54433 0.57735
IBA(Index of balanced accuracy) 0.95062 0.13169 0.27778
ICSI(Individual classification success index) 0.6 -0.16667 0.1
IS(Information score) 1.26303 1.0 0.26303
J(Jaccard index) 0.6 0.25 0.375
LS(Lift score) 2.4 2.0 1.2
MCC(Matthews correlation coefficient) 0.68313 0.2582 0.16903
MCCI(Matthews correlation coefficient interpretation) Moderate Negligible Negligible
MCEN(Modified confusion entropy) 0.26439 0.5 0.6875
MK(Markedness) 0.6 0.3 0.17143
N(Condition negative) 9 9 6
NLR(Negative likelihood ratio) 0.0 0.75 0.75
NLRI(Negative likelihood ratio interpretation) Good Negligible Negligible
NPV(Negative predictive value) 1.0 0.8 0.57143
OC(Overlap coefficient) 1.0 0.5 0.6
OOC(Otsuka-Ochiai coefficient) 0.7746 0.40825 0.54772
OP(Optimized precision) 0.70833 0.29545 0.44048
P(Condition positive or support) 3 3 6
PLR(Positive likelihood ratio) 4.5 3.0 1.5
PLRI(Positive likelihood ratio interpretation) Poor Poor Poor
POP(Population) 12 12 12
PPV(Precision or positive predictive value) 0.6 0.5 0.6
PRE(Prevalence) 0.25 0.25 0.5
Q(Yule Q - coefficient of colligation) None 0.6 0.33333
QI(Yule Q interpretation) None Moderate Weak
RACC(Random accuracy) 0.10417 0.04167 0.20833
RACCU(Random accuracy unbiased) 0.11111 0.0434 0.21007
TN(True negative/correct rejection) 7 8 4
TNR(Specificity or true negative rate) 0.77778 0.88889 0.66667
TON(Test outcome negative) 7 10 7
TOP(Test outcome positive) 5 2 5
TP(True positive/hit) 3 1 3
TPR(Sensitivity, recall, hit rate, or true positive rate) 1.0 0.33333 0.5
Y(Youden index) 0.77778 0.22222 0.16667
dInd(Distance index) 0.22222 0.67586 0.60093
sInd(Similarity index) 0.84287 0.52209 0.57508
>>> cm.print_matrix()
Predict 0 1 2
Actual
0 3 0 0
1 0 1 2
2 2 1 3
>>> cm.print_normalized_matrix()
Predict 0 1 2
Actual
0 1.0 0.0 0.0
1 0.0 0.33333 0.66667
2 0.33333 0.16667 0.5
>>> cm.print_matrix(one_vs_all=True,class_name=0) # One-Vs-All, new in version 1.4
Predict 0 ~
Actual
0 3 0
~ 2 7
>>> cm = ConfusionMatrix(y_actu, y_pred, classes=[1,0,2]) # classes, new in version 3.2
>>> cm.print_matrix()
Predict 1 0 2
Actual
1 1 0 2
0 0 3 0
2 1 2 3
>>> cm = ConfusionMatrix(y_actu, y_pred, classes=[1,0,4]) # classes, new in version 3.2
>>> cm.print_matrix()
Predict 1 0 4
Actual
1 1 0 0
0 0 3 0
4 0 0 0
Direct CM
>>> from pycm import *
>>> cm2 = ConfusionMatrix(matrix={"Class1": {"Class1": 1, "Class2":2}, "Class2": {"Class1": 0, "Class2": 5}}) # Create CM Directly
>>> cm2
pycm.ConfusionMatrix(classes: ['Class1', 'Class2'])
>>> print(cm2)
Predict Class1 Class2
Actual
Class1 1 2
Class2 0 5
Overall Statistics :
95% CI (0.44994,1.05006)
ACC Macro 0.75
ARI 0.17241
AUNP 0.66667
AUNU 0.66667
Bangdiwala B 0.68421
Bennett S 0.5
CBA 0.52381
CSI 0.52381
Chi-Squared 1.90476
Chi-Squared DF 1
Conditional Entropy 0.34436
Cramer V 0.48795
Cross Entropy 1.2454
F1 Macro 0.66667
F1 Micro 0.75
FNR Macro 0.33333
FNR Micro 0.25
FPR Macro 0.33333
FPR Micro 0.25
Gwet AC1 0.6
Hamming Loss 0.25
Joint Entropy 1.29879
KL Divergence 0.29097
Kappa 0.38462
Kappa 95% CI (-0.354,1.12323)
Kappa No Prevalence 0.5
Kappa Standard Error 0.37684
Kappa Unbiased 0.33333
Krippendorff Alpha 0.375
Lambda A 0.33333
Lambda B 0.0
Mutual Information 0.1992
NIR 0.625
Overall ACC 0.75
Overall CEN 0.44812
Overall J (1.04762,0.52381)
Overall MCC 0.48795
Overall MCEN 0.29904
Overall RACC 0.59375
Overall RACCU 0.625
P-Value 0.36974
PPV Macro 0.85714
PPV Micro 0.75
Pearson C 0.43853
Phi-Squared 0.2381
RCI 0.20871
RR 4.0
Reference Entropy 0.95443
Response Entropy 0.54356
SOA1(Landis & Koch) Fair
SOA2(Fleiss) Poor
SOA3(Altman) Fair
SOA4(Cicchetti) Poor
SOA5(Cramer) Relatively Strong
SOA6(Matthews) Weak
Scott PI 0.33333
Standard Error 0.15309
TNR Macro 0.66667
TNR Micro 0.75
TPR Macro 0.66667
TPR Micro 0.75
Zero-one Loss 2
Class Statistics :
Classes Class1 Class2
ACC(Accuracy) 0.75 0.75
AGF(Adjusted F-score) 0.53979 0.81325
AGM(Adjusted geometric mean) 0.73991 0.5108
AM(Difference between automatic and manual classification) -2 2
AUC(Area under the ROC curve) 0.66667 0.66667
AUCI(AUC value interpretation) Fair Fair
AUPR(Area under the PR curve) 0.66667 0.85714
BCD(Bray-Curtis dissimilarity) 0.125 0.125
BM(Informedness or bookmaker informedness) 0.33333 0.33333
CEN(Confusion entropy) 0.5 0.43083
DOR(Diagnostic odds ratio) None None
DP(Discriminant power) None None
DPI(Discriminant power interpretation) None None
ERR(Error rate) 0.25 0.25
F0.5(F0.5 score) 0.71429 0.75758
F1(F1 score - harmonic mean of precision and sensitivity) 0.5 0.83333
F2(F2 score) 0.38462 0.92593
FDR(False discovery rate) 0.0 0.28571
FN(False negative/miss/type 2 error) 2 0
FNR(Miss rate or false negative rate) 0.66667 0.0
FOR(False omission rate) 0.28571 0.0
FP(False positive/type 1 error/false alarm) 0 2
FPR(Fall-out or false positive rate) 0.0 0.66667
G(G-measure geometric mean of precision and sensitivity) 0.57735 0.84515
GI(Gini index) 0.33333 0.33333
GM(G-mean geometric mean of specificity and sensitivity) 0.57735 0.57735
IBA(Index of balanced accuracy) 0.11111 0.55556
ICSI(Individual classification success index) 0.33333 0.71429
IS(Information score) 1.41504 0.19265
J(Jaccard index) 0.33333 0.71429
LS(Lift score) 2.66667 1.14286
MCC(Matthews correlation coefficient) 0.48795 0.48795
MCCI(Matthews correlation coefficient interpretation) Weak Weak
MCEN(Modified confusion entropy) 0.38998 0.51639
MK(Markedness) 0.71429 0.71429
N(Condition negative) 5 3
NLR(Negative likelihood ratio) 0.66667 0.0
NLRI(Negative likelihood ratio interpretation) Negligible Good
NPV(Negative predictive value) 0.71429 1.0
OC(Overlap coefficient) 1.0 1.0
OOC(Otsuka-Ochiai coefficient) 0.57735 0.84515
OP(Optimized precision) 0.25 0.25
P(Condition positive or support) 3 5
PLR(Positive likelihood ratio) None 1.5
PLRI(Positive likelihood ratio interpretation) None Poor
POP(Population) 8 8
PPV(Precision or positive predictive value) 1.0 0.71429
PRE(Prevalence) 0.375 0.625
Q(Yule Q - coefficient of colligation) None None
QI(Yule Q interpretation) None None
RACC(Random accuracy) 0.04688 0.54688
RACCU(Random accuracy unbiased) 0.0625 0.5625
TN(True negative/correct rejection) 5 1
TNR(Specificity or true negative rate) 1.0 0.33333
TON(Test outcome negative) 7 1
TOP(Test outcome positive) 1 7
TP(True positive/hit) 1 5
TPR(Sensitivity, recall, hit rate, or true positive rate) 0.33333 1.0
Y(Youden index) 0.33333 0.33333
dInd(Distance index) 0.66667 0.66667
sInd(Similarity index) 0.5286 0.5286
>>> cm2.stat(summary=True)
Overall Statistics :
ACC Macro 0.75
F1 Macro 0.66667
FPR Macro 0.33333
Kappa 0.38462
Overall ACC 0.75
PPV Macro 0.85714
SOA1(Landis & Koch) Fair
TPR Macro 0.66667
Zero-one Loss 2
Class Statistics :
Classes Class1 Class2
ACC(Accuracy) 0.75 0.75
AUC(Area under the ROC curve) 0.66667 0.66667
AUCI(AUC value interpretation) Fair Fair
F1(F1 score - harmonic mean of precision and sensitivity) 0.5 0.83333
FN(False negative/miss/type 2 error) 2 0
FP(False positive/type 1 error/false alarm) 0 2
FPR(Fall-out or false positive rate) 0.0 0.66667
N(Condition negative) 5 3
P(Condition positive or support) 3 5
POP(Population) 8 8
PPV(Precision or positive predictive value) 1.0 0.71429
TN(True negative/correct rejection) 5 1
TON(Test outcome negative) 7 1
TOP(Test outcome positive) 1 7
TP(True positive/hit) 1 5
TPR(Sensitivity, recall, hit rate, or true positive rate) 0.33333 1.0
>>> cm3 = ConfusionMatrix(matrix={"Class1": {"Class1": 1, "Class2":0}, "Class2": {"Class1": 2, "Class2": 5}},transpose=True) # Transpose Matrix
>>> cm3.print_matrix()
Predict Class1 Class2
Actual
Class1 1 2
Class2 0 5
matrix()
andnormalized_matrix()
renamed toprint_matrix()
andprint_normalized_matrix()
inversion 1.5
Activation threshold
threshold
is added in version 0.9
for real value prediction.
For more information visit Example3
Load from file
file
is added in version 0.9.5
in order to load saved confusion matrix with .obj
format generated by save_obj
method.
For more information visit Example4
Sample weights
sample_weight
is added in version 1.2
For more information visit Example5
Transpose
transpose
is added in version 1.2
in order to transpose input matrix (only in Direct CM
mode)
Relabel
relabel
method is added in version 1.5
in order to change ConfusionMatrix classnames.
>>> cm.relabel(mapping={0:"L1",1:"L2",2:"L3"})
>>> cm
pycm.ConfusionMatrix(classes: ['L1', 'L2', 'L3'])
Position
position
method is added in version 2.8
in order to find the indexes of observations in predict_vector
which made TP, TN, FP, FN.
>>> cm.position()
{0: {'FN': [], 'FP': [0, 7], 'TP': [1, 4, 9], 'TN': [2, 3, 5, 6, 8, 10, 11]}, 1: {'FN': [5, 10], 'FP': [3], 'TP': [6], 'TN': [0, 1, 2, 4, 7, 8, 9, 11]}, 2: {'FN': [0, 3, 7], 'FP': [5, 10], 'TP': [2, 8, 11], 'TN': [1, 4, 6, 9]}}
To array
to_array
method is added in version 2.9
in order to returns the confusion matrix in the form of a NumPy array. This can be helpful to apply different operations over the confusion matrix for different purposes such as aggregation, normalization, and combination.
>>> cm.to_array()
array([[3, 0, 0],
[0, 1, 2],
[2, 1, 3]])
>>> cm.to_array(normalized=True)
array([[1. , 0. , 0. ],
[0. , 0.33333, 0.66667],
[0.33333, 0.16667, 0.5 ]])
>>> cm.to_array(normalized=True,one_vs_all=True, class_name="L1")
array([[1. , 0. ],
[0.22222, 0.77778]])
Combine
combine
method is added in version 3.0
in order to merge two confusion matrices. This option will be useful in mini-batch learning.
>>> cm_combined = cm2.combine(cm3)
>>> cm_combined.print_matrix()
Predict Class1 Class2
Actual
Class1 2 4
Class2 0 10
Plot
plot
method is added in version 3.0
in order to plot a confusion matrix using Matplotlib or Seaborn.
>>> cm.plot()
>>> from matplotlib import pyplot as plt
>>> cm.plot(cmap=plt.cm.Greens,number_label=True,plot_lib="matplotlib")
>>> cm.plot(cmap=plt.cm.Reds,normalized=True,number_label=True,plot_lib="seaborn")
Online help
online_help
function is added in version 1.1
in order to open each statistics definition in web browser
>>> from pycm import online_help
>>> online_help("J")
>>> online_help("SOA1(Landis & Koch)")
>>> online_help(2)
- List of items are available by calling
online_help()
(without argument) - If PyCM website is not available, set
alt_link = True
(new inversion 2.4
)
Parameter recommender
This option has been added in version 1.9
to recommend the most related parameters considering the characteristics of the input dataset.
The suggested parameters are selected according to some characteristics of the input such as being balance/imbalance and binary/multi-class.
All suggestions can be categorized into three main groups: imbalanced dataset, binary classification for a balanced dataset, and multi-class classification for a balanced dataset.
The recommendation lists have been gathered according to the respective paper of each parameter and the capabilities which had been claimed by the paper.
>>> cm.imbalance
False
>>> cm.binary
False
>>> cm.recommended_list
['MCC', 'TPR Micro', 'ACC', 'PPV Macro', 'BCD', 'Overall MCC', 'Hamming Loss', 'TPR Macro', 'Zero-one Loss', 'ERR', 'PPV Micro', 'Overall ACC']
is_imbalanced
parameter has been added in version 3.3
, so the user can indicate whether the concerned dataset is imbalanced or not. As long as the user does not provide any information in this regard, the automatic detection algorithm will be used.
>>> cm = ConfusionMatrix(y_actu, y_pred, is_imbalanced = True)
>>> cm.imbalance
True
>>> cm = ConfusionMatrix(y_actu, y_pred, is_imbalanced = False)
>>> cm.imbalance
False
Compare
In version 2.0
, a method for comparing several confusion matrices is introduced. This option is a combination of several overall and class-based benchmarks. Each of the benchmarks evaluates the performance of the classification algorithm from good to poor and give them a numeric score. The score of good and poor performances are 1 and 0, respectively.
After that, two scores are calculated for each confusion matrices, overall and class-based. The overall score is the average of the score of six overall benchmarks which are Landis & Koch, Fleiss, Altman, Cicchetti, Cramer, and Matthews. In the same manner, the class-based score is the average of the score of six class-based benchmarks which are Positive Likelihood Ratio Interpretation, Negative Likelihood Ratio Interpretation, Discriminant Power Interpretation, AUC value Interpretation, Matthews Correlation Coefficient Interpretation and Yule's Q Interpretation. It should be noticed that if one of the benchmarks returns none for one of the classes, that benchmarks will be eliminated in total averaging. If the user sets weights for the classes, the averaging over the value of class-based benchmark scores will transform to a weighted average.
If the user sets the value of by_class
boolean input True
, the best confusion matrix is the one with the maximum class-based score. Otherwise, if a confusion matrix obtains the maximum of both overall and class-based scores, that will be reported as the best confusion matrix, but in any other case, the compared object doesn’t select the best confusion matrix.
>>> cm2 = ConfusionMatrix(matrix={0:{0:2,1:50,2:6},1:{0:5,1:50,2:3},2:{0:1,1:7,2:50}})
>>> cm3 = ConfusionMatrix(matrix={0:{0:50,1:2,2:6},1:{0:50,1:5,2:3},2:{0:1,1:55,2:2}})
>>> cp = Compare({"cm2":cm2,"cm3":cm3})
>>> print(cp)
Best : cm2
Rank Name Class-Score Overall-Score
1 cm2 0.50278 0.425
2 cm3 0.33611 0.33056
>>> cp.best
pycm.ConfusionMatrix(classes: [0, 1, 2])
>>> cp.sorted
['cm2', 'cm3']
>>> cp.best_name
'cm2'
Acceptable data types
ConfusionMatrix
actual_vector
: pythonlist
or numpyarray
of any stringable objectspredict_vector
: pythonlist
or numpyarray
of any stringable objectsmatrix
:dict
digit
:int
threshold
:FunctionType (function or lambda)
file
:File object
sample_weight
: pythonlist
or numpyarray
of numberstranspose
:bool
classes
: pythonlist
is_imbalanced
:bool
- Run
help(ConfusionMatrix)
forConfusionMatrix
object details
Compare
cm_dict
: pythondict
ofConfusionMatrix
object (str
:ConfusionMatrix
)by_class
:bool
class_weight
: pythondict
of class weights (class_name
:float
)class_benchmark_weight
: pythondict
of class benchmark weights (class_benchmark_name
:float
)overall_benchmark_weight
: pythondict
of overall benchmark weights (overall_benchmark_name
:float
)digit
:int
- Run
help(Compare)
forCompare
object details
For more information visit here
Try PyCM in your browser!
PyCM can be used online in interactive Jupyter Notebooks via the Binder or Colab services! Try it out now! :
- Check
Examples
inDocument
folder
Issues & bug reports
- Fill an issue and describe it. We'll check it ASAP!
- Please complete the issue template
- Discord : https://discord.com/invite/zqpU2b3J3f
- Website : https://www.pycm.ir
- Mailing List : https://mail.python.org/mailman3/lists/pycm.python.org/
- Email : info@pycm.ir
Outputs
Dependencies
master | dev |
References
1- J. R. Landis and G. G. Koch, "The measurement of observer agreement for categorical data," biometrics, pp. 159-174, 1977.
2- D. M. Powers, "Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation," arXiv preprint arXiv:2010.16061, 2020.
3- C. Sammut and G. I. Webb, Encyclopedia of machine learning. Springer Science & Business Media, 2011.
4- J. L. Fleiss, "Measuring nominal scale agreement among many raters," Psychological bulletin, vol. 76, no. 5, p. 378, 1971.
5- D. G. Altman, Practical statistics for medical research. CRC press, 1990.
6- K. L. Gwet, "Computing inter-rater reliability and its variance in the presence of high agreement," British Journal of Mathematical and Statistical Psychology, vol. 61, no. 1, pp. 29-48, 2008.
7- W. A. Scott, "Reliability of content analysis: The case of nominal scale coding," Public opinion quarterly, pp. 321-325, 1955.
8- E. M. Bennett, R. Alpert, and A. Goldstein, "Communications through limited-response questioning," Public Opinion Quarterly, vol. 18, no. 3, pp. 303-308, 1954.
9- D. V. Cicchetti, "Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology," Psychological assessment, vol. 6, no. 4, p. 284, 1994.
10- R. B. Davies, "Algorithm AS 155: The distribution of a linear combination of χ2 random variables," Applied Statistics, pp. 323-333, 1980.
11- S. Kullback and R. A. Leibler, "On information and sufficiency," The annals of mathematical statistics, vol. 22, no. 1, pp. 79-86, 1951.
12- L. A. Goodman and W. H. Kruskal, "Measures of association for cross classifications, IV: Simplification of asymptotic variances," Journal of the American Statistical Association, vol. 67, no. 338, pp. 415-421, 1972.
13- L. A. Goodman and W. H. Kruskal, "Measures of association for cross classifications III: Approximate sampling theory," Journal of the American Statistical Association, vol. 58, no. 302, pp. 310-364, 1963.
14- T. Byrt, J. Bishop, and J. B. Carlin, "Bias, prevalence and kappa," Journal of clinical epidemiology, vol. 46, no. 5, pp. 423-429, 1993.
15- M. Shepperd, D. Bowes, and T. Hall, "Researcher bias: The use of machine learning in software defect prediction," IEEE Transactions on Software Engineering, vol. 40, no. 6, pp. 603-616, 2014.
16- X. Deng, Q. Liu, Y. Deng, and S. Mahadevan, "An improved method to construct basic probability assignment based on the confusion matrix for classification problem," Information Sciences, vol. 340, pp. 250-261, 2016.
17- J.-M. Wei, X.-J. Yuan, Q.-H. Hu, and S.-Q. Wang, "A novel measure for evaluating classifiers," Expert Systems with Applications, vol. 37, no. 5, pp. 3799-3809, 2010.
18- I. Kononenko and I. Bratko, "Information-based evaluation criterion for classifier's performance," Machine learning, vol. 6, no. 1, pp. 67-80, 1991.
19- R. Delgado and J. D. Núnez-González, "Enhancing confusion entropy as measure for evaluating classifiers," in The 13th International Conference on Soft Computing Models in Industrial and Environmental Applications, 2018: Springer, pp. 79-89.
20- J. Gorodkin, "Comparing two K-category assignments by a K-category correlation coefficient," Computational biology and chemistry, vol.28, no. 5-6, pp. 367-374, 2004.
21- C. O. Freitas, J. M. De Carvalho, J. Oliveira, S. B. Aires, and R. Sabourin, "Confusion matrix disagreement for multiple classifiers," in Iberoamerican Congress on Pattern Recognition, 2007: Springer, pp. 387-396.
22- P. Branco, L. Torgo, and R. P. Ribeiro, "Relevance-based evaluation metrics for multi-class imbalanced domains," in Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2017: Springer, pp. 698-710.
23- D. Ballabio, F. Grisoni, and R. Todeschini, "Multivariate comparison of classification performance measures," Chemometrics and Intelligent Laboratory Systems, vol. 174, pp. 33-44, 2018.
24- J. Cohen, "A coefficient of agreement for nominal scales," Educational and psychological measurement, vol. 20, no. 1, pp. 37-46, 1960.
25- S. Siegel, "Nonparametric statistics for the behavioral sciences," 1956.
26- H. Cramér, Mathematical methods of statistics. Princeton university press, 1999.
27- B. W. Matthews, "Comparison of the predicted and observed secondary structure of T4 phage lysozyme," Biochimica et Biophysica Acta (BBA)-Protein Structure, vol. 405, no. 2, pp. 442-451, 1975.
28- J. A. Swets, "The relative operating characteristic in psychology: a technique for isolating effects of response bias finds wide use in the study of perception and cognition," Science, vol. 182, no. 4116, pp. 990-1000, 1973.
29- P. Jaccard, "Étude comparative de la distribution florale dans une portion des Alpes et des Jura," Bull Soc Vaudoise Sci Nat, vol. 37, pp. 547-579, 1901.
30- T. M. Cover and J. A. Thomas, Elements of Information Theory. John Wiley & Sons, 2012.
31- E. S. Keeping, Introduction to statistical inference. Courier Corporation, 1995.
32- V. Sindhwani, P. Bhattacharya, and S. Rakshit, "Information theoretic feature crediting in multiclass support vector machines," in Proceedings of the 2001 SIAM International Conference on Data Mining, 2001: SIAM, pp. 1-18.
33- M. Bekkar, H. K. Djemaa, and T. A. Alitouche, "Evaluation measures for models assessment over imbalanced data sets," J Inf Eng Appl, vol. 3, no. 10, 2013.
34- W. J. Youden, "Index for rating diagnostic tests," Cancer, vol. 3, no. 1, pp. 32-35, 1950.
35- S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, "Dynamic itemset counting and implication rules for market basket data," in Proceedings of the 1997 ACM SIGMOD international conference on Management of data, 1997, pp. 255-264.
36- S. Raschka, "MLxtend: Providing machine learning and data science utilities and extensions to Python's scientific computing stack," Journal of open source software, vol. 3, no. 24, p. 638, 2018.
37- J. R. Bray and J. T. Curtis, "An ordination of the upland forest communities of southern Wisconsin," Ecological monographs, vol. 27, no. 4, pp. 325-349, 1957.
38- J. L. Fleiss, J. Cohen, and B. S. Everitt, "Large sample standard errors of kappa and weighted kappa," Psychological bulletin, vol. 72, no. 5, p. 323, 1969.
39- M. Felkin, "Comparing classification results between n-ary and binary problems," in Quality Measures in Data Mining: Springer, 2007, pp. 277-301.
40- R. Ranawana and V. Palade, "Optimized precision-a new measure for classifier performance evaluation," in 2006 IEEE International Conference on Evolutionary Computation, 2006: IEEE, pp. 2254-2261.
41- V. García, R. A. Mollineda, and J. S. Sánchez, "Index of balanced accuracy: A performance measure for skewed class distributions," in Iberian conference on pattern recognition and image analysis, 2009: Springer, pp. 441-448.
42- P. Branco, L. Torgo, and R. P. Ribeiro, "A survey of predictive modeling on imbalanced domains," ACM Computing Surveys (CSUR), vol. 49, no. 2, pp. 1-50, 2016.
43- K. Pearson, "Notes on Regression and Inheritance in the Case of Two Parents," in Proceedings of the Royal Society of London, p. 240-242, 1895.
44- W. J. Conover, Practical nonparametric statistics. John Wiley & Sons, 1998.
45- G. U. Yule, "On the methods of measuring association between two attributes," Journal of the Royal Statistical Society, vol. 75, no. 6, pp. 579-652, 1912.
46- R. Batuwita and V. Palade, "A new performance measure for class imbalance learning. application to bioinformatics problems," in 2009 International Conference on Machine Learning and Applications, 2009: IEEE, pp. 545-550.
47- D. K. Lee, "Alternatives to P value: confidence interval and effect size," Korean journal of anesthesiology, vol. 69, no. 6, p. 555, 2016.
48- M. A. Raslich, R. J. Markert, and S. A. Stutes, "Selecting and interpreting diagnostic tests," Biochemia Medica, vol. 17, no. 2, pp. 151-161, 2007.
49- D. E. Hinkle, W. Wiersma, and S. G. Jurs, Applied statistics for the behavioral sciences. Houghton Mifflin College Division, 2003.
50- A. Maratea, A. Petrosino, and M. Manzo, "Adjusted F-measure and kernel scaling for imbalanced data learning," Information Sciences, vol. 257, pp. 331-341, 2014.
51- L. Mosley, "A balanced approach to the multi-class imbalance problem," 2013.
52- M. Vijaymeena and K. Kavitha, "A survey on similarity measures in text mining," Machine Learning and Applications: An International Journal, vol. 3, no. 2, pp. 19-28, 2016.
53- Y. Otsuka, "The faunal character of the Japanese Pleistocene marine Mollusca, as evidence of climate having become colder during the Pleistocene in Japan," Biogeograph Soc Japan, vol. 6, no. 16, pp. 165-170, 1936.
54- A. Tversky, "Features of similarity," Psychological review, vol. 84, no. 4, p. 327, 1977.
55- K. Boyd, K. H. Eng, and C. D. Page, "Area under the precision-recall curve: point estimates and confidence intervals," in Joint European conference on machine learning and knowledge discovery in databases, 2013: Springer, pp. 451-466.
56- J. Davis and M. Goadrich, "The relationship between Precision-Recall and ROC curves," in Proceedings of the 23rd international conference on Machine learning, 2006, pp. 233-240.
57- M. Kuhn, "Building predictive models in R using the caret package," J Stat Softw, vol. 28, no. 5, pp. 1-26, 2008.
58- V. Labatut and H. Cherifi, "Accuracy measures for the comparison of classifiers," arXiv preprint arXiv:1207.3790, 2012.
59- S. Wallis, "Binomial confidence intervals and contingency tests: mathematical fundamentals and the evaluation of alternative methods," Journal of Quantitative Linguistics, vol. 20, no. 3, pp. 178-208, 2013.
60- D. Altman, D. Machin, T. Bryant, and M. Gardner, Statistics with confidence: confidence intervals and statistical guidelines. John Wiley & Sons, 2013.
61- J. A. Hanley and B. J. McNeil, "The meaning and use of the area under a receiver operating characteristic (ROC) curve," Radiology, vol. 143, no. 1, pp. 29-36, 1982.
62- E. B. Wilson, "Probable inference, the law of succession, and statistical inference," Journal of the American Statistical Association, vol. 22, no. 158, pp. 209-212, 1927.
63- A. Agresti and B. A. Coull, "Approximate is better than “exact” for interval estimation of binomial proportions," The American Statistician, vol. 52, no. 2, pp. 119-126, 1998.
64- C. S. Peirce, "The numerical measure of the success of predictions," Science, no. 93, pp. 453-454, 1884.
65- E. W. Steyerberg, B. Van Calster, and M. J. Pencina, "Performance measures for prediction models and markers: evaluation of predictions and classifications," Revista Española de Cardiología (English Edition), vol. 64, no. 9, pp. 788-794, 2011.
66- A. J. Vickers and E. B. Elkin, "Decision curve analysis: a novel method for evaluating prediction models," Medical Decision Making, vol. 26, no. 6, pp. 565-574, 2006.
67- G. W. Bohrnstedt and D. Knoke,"Statistics for social data analysis," 1982.
68- W. M. Rand, "Objective criteria for the evaluation of clustering methods," Journal of the American Statistical association, vol. 66, no. 336, pp. 846-850, 1971.
69- J. M. Santos and M. Embrechts, "On the use of the adjusted rand index as a metric for evaluating supervised classification," in International conference on artificial neural networks, 2009: Springer, pp. 175-184.
70- J. Cohen, "Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit," Psychological bulletin, vol. 70, no. 4, p. 213, 1968.
71- R. Bakeman and J. M. Gottman, Observing interaction: An introduction to sequential analysis. Cambridge university press, 1997.
72- S. Bangdiwala, "A graphical test for observer agreement," in 45th International Statistical Institute Meeting, 1985, vol. 1985, p. 307.
73- K. Bangdiwala and H. Bryan, "Using SAS software graphical procedures for the observer agreement chart," in Proceedings of the SAS Users Group International Conference, 1987, vol. 12, pp. 1083-1088.
74- A. F. Hayes and K. Krippendorff, "Answering the call for a standard reliability measure for coding data," Communication methods and measures, vol. 1, no. 1, pp. 77-89, 2007.
75- M. Aickin, "Maximum likelihood estimation of agreement in the constant predictive probability model, and its relation to Cohen's kappa," Biometrics, pp. 293-302, 1990.
76- N. A. Macmillan and C. D. Creelman, Detectiontheory: A user's guide. Psychology press, 2004.
77- D. J. Hand, P. Christen, and N. Kirielle, "F*: an interpretable transformation of the F-measure," Machine Learning, vol. 110, no. 3, pp. 451-456, 2021.
78- G. W. Brier, "Verification of forecasts expressed in terms of probability," Monthly weather review, vol. 78, no. 1, pp. 1-3, 1950.
79- L. Buitinck et al., "API design for machine learning software: experiences from the scikit-learn project," arXiv preprint arXiv:1309.0238, 2013.
Cite
If you use PyCM in your research, we would appreciate citations to the following paper :
Haghighi, S., Jasemi, M., Hessabi, S. and Zolanvari, A. (2018). PyCM: Multiclass confusion matrix library in Python. Journal of Open Source Software, 3(25), p.729.
@article{Haghighi2018, doi = {10.21105/joss.00729}, url = {https://doi.org/10.21105/joss.00729}, year = {2018}, month = {may}, publisher = {The Open Journal}, volume = {3}, number = {25}, pages = {729}, author = {Sepand Haghighi and Masoomeh Jasemi and Shaahin Hessabi and Alireza Zolanvari}, title = {{PyCM}: Multiclass confusion matrix library in Python}, journal = {Journal of Open Source Software} }
Download PyCM.bib
JOSS | |
Zenodo | |
Researchgate |
Show your support
Star this repo
Give a ⭐️ if this project helped you!
Donate to our project
If you do like our project and we hope that you do, can you please support us? Our project is not and is never going to be working for profit. We need the money just so we can continue doing what we do ;-) .
Changelog
All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog and this project adheres to Semantic Versioning.
Unreleased
3.4 - 2022-01-26
Added
- Colab badge
- Discord badge
brier_score
method
Changed
J (Jaccard index)
section inDocument.ipynb
updatedsave_obj
method updatedPython 3.10
added totest.yml
- Example-3 updated
- Docstrings of the functions updated
CONTRIBUTING.md
updated
3.3 - 2021-10-27
Added
__compare_weight_handler__
function
Changed
is_imbalanced
parameter added to ConfusionMatrix__init__
methodclass_benchmark_weight
andoverall_benchmark_weight
parameters added to Compare__init__
methodstatistic_recommend
function modified- Compare
weight
parameter renamed toclass_weight
- Document modified
- License updated
AUTHORS.md
updatedREADME.md
modified- Block diagrams updated
3.2 - 2021-08-11
Added
classes_filter
function
Changed
classes
parameter added tomatrix_params_calc
functionclasses
parameter added to__obj_vector_handler__
functionclasses
parameter added to ConfusionMatrix__init__
methodname
parameter removed fromhtml_init
functionshortener
parameter added tohtml_table
functionshortener
parameter added tosave_html
method- Document modified
- HTML report modified
3.1 - 2021-03-11
Added
requirements-splitter.py
sensitivity_index
method
Changed
- Test system modified
overall_statistics
function modified- HTML report modified
- Document modified
- References format updated
CONTRIBUTING.md
updated
3.0 - 2020-10-26
Added
plot_test.py
axes_gen
functionadd_number_label
functionplot
methodcombine
methodmatrix_combine
function
Changed
- Document modified
README.md
modified- Example-2 deprecated
- Example-7 deprecated
- Error messages modified
2.9 - 2020-09-23
Added
notebook_check.py
to_array
method__copy__
methodcopy
method
Changed
average
method refactored
2.8 - 2020-07-09
Added
label_map
attributepositions
attributeposition
method- Krippendorff's Alpha
- Aickin's Alpha
weighted_alpha
method
Changed
- Single class bug fixed
CLASS_NUMBER_ERROR
error type changed topycmMatrixError
relabel
method bug fixed- Document modified
README.md
modified
2.7 - 2020-05-11
Added
average
methodweighted_average
methodweighted_kappa
methodpycmAverageError
class- Bangdiwala's B
- MATLAB examples
- Github action
Changed
- Document modified
README.md
modifiedrelabel
method bug fixedsparse_table_print
function bug fixedmatrix_check
function bug fixed- Minor bug in
Compare
class fixed - Class names mismatch bug fixed
2.6 - 2020-03-25
Added
custom_rounder
functioncomplement
functionsparse_matrix
attributesparse_normalized_matrix
attribute- Net benefit (NB)
- Yule's Q interpretation (QI)
- Adjusted Rand index (ARI)
- TNR micro/macro
- FPR micro/macro
- FNR micro/macro
Changed
sparse
parameter added toprint_matrix
,print_normalized_matrix
andsave_stat
methodsheader
parameter added tosave_csv
method- Handler functions moved to
pycm_handler.py
- Error objects moved to
pycm_error.py
- Verified tests references updated
- Verified tests moved to
verified_test.py
- Test system modified
CONTRIBUTING.md
updated- Namespace optimized
README.md
modified- Document modified
print_normalized_matrix
method modifiednormalized_table_calc
function modifiedsetup.py
modified- summary mode updated
- Dockerfile updated
Python 3.8
added to.travis.yaml
andappveyor.yml
Removed
PC_PI_calc
function
2.5 - 2019-10-16
Added
__version__
variable- Individual classification success index (ICSI)
- Classification success index (CSI)
- Example-8 (Confidence interval)
install.sh
autopep8.sh
- Dockerfile
CI
method (supported statistics :ACC
,AUC
,Overall ACC
,Kappa
,TPR
,TNR
,PPV
,NPV
,PLR
,NLR
,PRE
)
Changed
test.sh
moved to.travis
folder- Python 3.4 support dropped
- Python 2.7 support dropped
AUTHORS.md
updatedsave_stat
,save_csv
andsave_html
methods Non-ASCII character bug fixed- Mixed type input vectors bug fixed
CONTRIBUTING.md
updated- Example-3 updated
README.md
modified- Document modified
CI
attribute renamed toCI95
kappa_se_calc
function renamed tokappa_SE_calc
se_calc
function modified and renamed toSE_calc
- CI/SE functions moved to
pycm_ci.py
- Minor bug in
save_html
method fixed
2.4 - 2019-07-31
Added
- Tversky index (TI)
- Area under the PR curve (AUPR)
FUNDING.yml
Changed
AUC_calc
function modified- Document modified
summary
parameter added tosave_html
,save_stat
,save_csv
andstat
methodssample_weight
bug innumpy
array format fixed- Inputs manipulation bug fixed
- Test system modified
- Warning system modified
alt_link
parameter added tosave_html
method andonline_help
functionCompare
class tests moved tocompare_test.py
- Warning tests moved to
warning_test.py
2.3 - 2019-06-27
Added
- Adjusted F-score (AGF)
- Overlap coefficient (OC)
- Otsuka-Ochiai coefficient (OOC)
Changed
save_stat
andsave_vector
parameters added tosave_obj
method- Document modified
README.md
modified- Parameters recommendation for imbalance dataset modified
- Minor bug in
Compare
class fixed pycm_help
function modified- Benchmarks color modified
2.2 - 2019-05-30
Added
- Negative likelihood ratio interpretation (NLRI)
- Cramer's benchmark (SOA5)
- Matthews correlation coefficient interpretation (MCCI)
- Matthews's benchmark (SOA6)
- F1 macro
- F1 micro
- Accuracy macro
Changed
Compare
class score calculation modified- Parameters recommendation for multi-class dataset modified
- Parameters recommendation for imbalance dataset modified
README.md
modified- Document modified
- Logo updated
2.1 - 2019-05-06
Added
- Adjusted geometric mean (AGM)
- Yule's Q (Q)
Compare
class and parameters recommendation system block diagrams
Changed
- Document links bug fixed
- Document modified
2.0 - 2019-04-15
Added
- G-Mean (GM)
- Index of balanced accuracy (IBA)
- Optimized precision (OP)
- Pearson's C (C)
Compare
class- Parameters recommendation warning
ConfusionMatrix
equal method
Changed
- Document modified
stat_print
function bug fixedtable_print
function bug fixedBeta
parameter renamed tobeta
(F_calc
function &F_beta
method)- Parameters recommendation for imbalance dataset modified
normalize
parameter added tosave_html
methodpycm_func.py
splitted intopycm_class_func.py
andpycm_overall_func.py
vector_filter
,vector_check
,class_check
andmatrix_check
functions moved topycm_util.py
RACC_calc
andRACCU_calc
functions exception handler modified- Docstrings modified
1.9 - 2019-02-25
Added
- Automatic/Manual (AM)
- Bray-Curtis dissimilarity (BCD)
CODE_OF_CONDUCT.md
ISSUE_TEMPLATE.md
PULL_REQUEST_TEMPLATE.md
CONTRIBUTING.md
- X11 color names support for
save_html
method - Parameters recommendation system
- Warning message for high dimension matrix print
- Interactive notebooks section (binder)
Changed
save_matrix
andnormalize
parameters added tosave_csv
methodREADME.md
modified- Document modified
ConfusionMatrix.__init__
optimized- Document and examples output files moved to different folders
- Test system modified
relabel
method bug fixed
1.8 - 2019-01-05
Added
- Lift score (LS)
version_check.py
Changed
color
parameter added tosave_html
method- Error messages modified
- Document modified
- Website changed to http://www.pycm.ir
- Interpretation functions moved to
pycm_interpret.py
- Utility functions moved to
pycm_util.py
- Unnecessary
else
andelif
removed ==
changed tois
1.7 - 2018-12-18
Added
- Gini index (GI)
- Example-7
pycm_profile.py
Changed
class_name
parameter added tostat
,save_stat
,save_csv
andsave_html
methodsoverall_param
andclass_param
parameters empty list bug fixedmatrix_params_calc
,matrix_params_from_table
andvector_filter
functions optimizedoverall_MCC_calc
,CEN_misclassification_calc
andconvex_combination
functions optimized- Document modified
1.6 - 2018-12-06
Added
- AUC value interpretation (AUCI)
- Example-6
- Anaconda cloud package
Changed
overall_param
andclass_param
parameters added tostat
,save_stat
andsave_html
methodsclass_param
parameter added tosave_csv
method_
removed from overall statistics namesREADME.md
modified- Document modified
1.5 - 2018-11-26
Added
- Relative classifier information (RCI)
- Discriminator power (DP)
- Youden's index (Y)
- Discriminant power interpretation (DPI)
- Positive likelihood ratio interpretation (PLRI)
__len__
methodrelabel
method__class_stat_init__
function__overall_stat_init__
functionmatrix
attribute as dictnormalized_matrix
attribute as dictnormalized_table
attribute as dict
Changed
README.md
modified- Document modified
LR+
renamed toPLR
LR-
renamed toNLR
normalized_matrix
method renamed toprint_normalized_matrix
matrix
method renamed toprint_matrix
entropy_calc
fixedcross_entropy_calc
fixedconditional_entropy_calc
fixedprint_table
bug for large numbers fixed- JSON key bug in
save_obj
fixed transpose
bug insave_obj
fixedPython 3.7
added to.travis.yaml
andappveyor.yml
1.4 - 2018-11-12
Added
- Area under curve (AUC)
- AUNU
- AUNP
- Class balance accuracy (CBA)
- Global performance index (RR)
- Overall MCC
- Distance index (dInd)
- Similarity index (sInd)
one_vs_all
dev-requirements.txt
Changed
README.md
modified- Document modified
save_stat
modifiedrequirements.txt
modified
1.3 - 2018-10-10
Added
- Confusion entropy (CEN)
- Overall confusion entropy (Overall CEN)
- Modified confusion entropy (MCEN)
- Overall modified confusion entropy (Overall MCEN)
- Information score (IS)
Changed
README.md
modified
1.2 - 2018-10-01
Added
- No information rate (NIR)
- P-Value
sample_weight
transpose
Changed
README.md
modified- Key error in some parameters fixed
OSX
env added to.travis.yml
1.1 - 2018-09-08
Added
- Zero-one loss
- Support
online_help
function
Changed
README.md
modifiedhtml_table
function modifiedtable_print
function modifiednormalized_table_print
function modified
1.0 - 2018-08-30
Added
- Hamming loss
Changed
README.md
modified
0.9.5 - 2018-07-08
Added
- Obj load
- Obj save
- Example-4
Changed
README.md
modified- Block diagram updated
0.9 - 2018-06-28
Added
- Activation threshold
- Example-3
- Jaccard index
- Overall Jaccard index
Changed
README.md
modifiedsetup.py
modified
0.8.6 - 2018-05-31
Added
- Example section in document
- Python 2.7 CI
- JOSS paper pdf
Changed
- Cite section
- ConfusionMatrix docstring
- round function changed to numpy.around
README.md
modified
0.8.5 - 2018-05-21
Added
- Example-1 (Comparison of three different classifiers)
- Example-2 (How to plot via matplotlib)
- JOSS paper
- ConfusionMatrix docstring
Changed
- Table size in HTML report
- Test system
README.md
modified
0.8.1 - 2018-03-22
Added
- Goodman and Kruskal's lambda B
- Goodman and Kruskal's lambda A
- Cross entropy
- Conditional entropy
- Joint entropy
- Reference entropy
- Response entropy
- Kullback-Liebler divergence
- Direct ConfusionMatrix
- Kappa unbiased
- Kappa no prevalence
- Random accuracy unbiased
pycmVectorError
classpycmMatrixError
class- Mutual information
- Support
numpy
arrays
Changed
- Notebook file updated
Removed
pycmError
class
0.7 - 2018-02-26
Added
- Cramer's V
- 95% confidence interval
- Chi-Squared
- Phi-Squared
- Chi-Squared DF
- Standard error
- Kappa standard error
- Kappa 95% confidence interval
- Cicchetti benchmark
Changed
- Overall statistics color in HTML report
- Parameters description link in HTML report
0.6 - 2018-02-21
Added
- CSV report
- Changelog
- Output files
digit
parameter toConfusionMatrix
object
Changed
- Confusion matrix color in HTML report
- Parameters description link in HTML report
- Capitalize descriptions
0.5 - 2018-02-17
Added
- Scott's pi
- Gwet's AC1
- Bennett S score
- HTML report
0.4 - 2018-02-05
Added
- TPR micro/macro
- PPV micro/macro
- Overall RACC
- Error rate (ERR)
- FBeta score
- F0.5
- F2
- Fleiss benchmark
- Altman benchmark
- Output file(.pycm)
Changed
- Class with zero item
- Normalized matrix
Removed
- Kappa and SOA for each class
0.3 - 2018-01-27
Added
- Kappa
- Random accuracy
- Landis and Koch benchmark
overall_stat
0.2 - 2018-01-24
Added
- Population
- Condition positive
- Condition negative
- Test outcome positive
- Test outcome negative
- Prevalence
- G-measure
- Matrix method
- Normalized matrix method
- Params method
Changed
statistic_result
toclass_stat
params
tostat
0.1 - 2018-01-22
Added
- ACC
- BM
- DOR
- F1-Score
- FDR
- FNR
- FOR
- FPR
- LR+
- LR-
- MCC
- MK
- NPV
- PPV
- TNR
- TPR
- documents and
README.md
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.