Python interface to CmdStan
Project description
pycmdstan
Python interface to CmdStan.
Install
Pycmdstan is a pure-Python package which can be installed from PyPI
pip install --upgrade pycmdstan
or from sources
pip install -e git+https://gitlab.thevirtualbrain.org/tvb/pycmdstan
Usage
import os
os.environ['CMDSTAN'] = '~/src/cmdstan-2.17.1'
from pycmdstan import Model, Run
model = Model('''
data { vector[20] x; real mu; }
parameters { real sig; }
model { x ~ normal(mu, sig); }
generate quantities {
vector[20] log_lik;
for (i in 1:20) log_lik[i] = normal_lpdf(x[i] | mu, sig);
}
''')
runs = model.sample(
data=dict(mu, **data),
chains=4
)
assert runs.N_eff_per_iter.min() > 0.2
assert runs.R_hat.max() < 1.2
data = {'x': np.random.randn(20) + 5.0}
loo = []
mus = np.r_[1.0, 3.0, 5.0, 7.0, 9.0]
for mu in mus:
run = model.sample(
data=dict(mu=mu, **data), num_warmup=200, num_samples=200)
loo.append(run['loo'])
assert mus[np.argmin(loo)] == 5.0
CmdStan's command line arguments are structured as a tree, so while child parameters of the method argument can be passed directly,
model.sample(num_samples=500)
equivalent to
./$model sample num_samples=500
A more complex case with nested parameters looks like
./$model id=$i \
sample save_warmup=1 num_warmup=200 num_samples=200 \
adapt \
delta=0.8 \
algorithm=hmc \
engine=nuts \
max_depth=12
Pycmdstan doesn't do anything clever (yet), so full set of subarguments need to be passed as equivalent strings
model.sample(
save_warmup=1,
num_warmup=200,
num_samples=200,
adapt_='delta=0.8',
algorithm='hmc engine=nuts max_depth=12'
)
Here, the _
postfix on adapt_
means adapt
doesn't take a value, but subarguments. In doubt,
the command line used to call the model is available as an attribute of the Run
instance,
run = model.sample(...)
print(run.cmd)
Contributing
Contributions are welcome, please start in the issue tracker. Use YAPF to format the code. The Dockerfile can ease local development,
docker build -t pycmdstan .
docker run --rm -it pycmdstan pytest -n4 pycmdstan/tests.py
Acknowledgements
- PSIS code is by Aki Vehtari & Tuomas Sivula (BSD licensed, repo here)
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pycmdstan-0.5.tar.gz
.
File metadata
- Download URL: pycmdstan-0.5.tar.gz
- Upload date:
- Size: 12.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7dbff8cb5d742d07eb336689c192584925f83470a75269ace51b4a377ff71e14 |
|
MD5 | d7eeb82940c9628abb4e1310fe33c530 |
|
BLAKE2b-256 | 370467ccac25262eb48cd34439744f5c3e016f2db48ded5f427beef78f1859b8 |
File details
Details for the file pycmdstan-0.5-py3-none-any.whl
.
File metadata
- Download URL: pycmdstan-0.5-py3-none-any.whl
- Upload date:
- Size: 14.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 11cd5f10b763068f457eba7508c3071b79d797b2de28bf7cba7f9b23b5689ca3 |
|
MD5 | df56692612fdd2c3f1a5313e8270c41c |
|
BLAKE2b-256 | 8d471c2571d3a0af78fe245e9168a4a18711736a33aa6e2ebdd1014507e6850c |