Skip to main content

A Python implementation of the COARE bulk air-sea flux algorithm.

Project description

Tests License Code coverage Docs PyPI version

pyCOARE

This is a beta version of an implementation of the COARE algorithm that builds on the original NOAA-PSL pyCOARE code. Currently only COARE v3.5 is implemented - hopefully v3.6 will come soon!

This version makes minor updates to the code itself, refactors code to improve readability, maintability, and distribution, and creates a standardized API for calling functions. See the changelog for all mathematically relevant changes made to the original code.

Installation

The latest stable version (currently a beta) can be downloaded using Pip

pip install pycoare

You can install the most up-to-date version using

pip install git+https://github.com/pyCOARE/coare

Contribution

I welcome any contributions. Please feel free to raise an issue or submit a pull request.

Origins and Credits

The international TOGA-COARE field program which took place in the western Pacific warm pool over 4 months from November 1992 to February 1993 (Fairall et al. 1996a, 1996b and 1997) spurred the development of the COARE model. The algorithm is intended to provide estimates of momentum, sensible heat, and latent heat fluxes using inputs of bulk atmospheric variables (wind speed, SST, air temperature, air humidity). The algorithm contains subroutines/functions to handle near-surface gradients of temperature in the ocean.

This Python implementation of the COARE algorithm was initially translated from MATLAB by Byron Blomquist and Ludovic Bariteau. For more information on the people and publications that developed the COARE algorithm, see the references below.

Versions

  • Version 2.5 was published in 1996.
  • Version 3.0 was published in 2003; it was a major update from Version 2.5. This update was based on new observations at higher wind speeds (10 to 20 m/s). Available in MATLAB and FORTRAN only.
  • Version 3.5 was released in 2013 following the publication of Edson et al. 2013, which made adjustments to the wind speed dependence of the Charnock parameter based on a large database of direct covariance stress observations (principally from a buoy). This led to an increase in stress for wind speeds greater than about 18 m/s. The roughness Reynolds number formulation of the scalar roughness length was tuned slightly to give the same values of Ch and Ce as Version 3.0. The diurnal warm layer model was structured as a separate routine instead of embedded in a driver program. COARE 3.5 was based on Edson’s buoy data (Edson et al. 2013) and was compared to a large database (a total of 16,000 hours of observations) combining observations from NOAA, WHOI, and U. Miami (Fairall et al. 2011). It is available in Python and MATLAB.
  • Version 3.6 is slightly restructured and built around improvements in the representation of the effects of waves on fluxes. This includes improved relationships of surface roughness, $z_o$, and whitecap fraction, $W_f$, on wave parameters. More details can be found in coare3.6_readme_1.pdf. This version is available in Python, MATLAB and FORTRAN.

References:

  • Edson, J.B., J. V. S. Raju, R.A. Weller, S. Bigorre, A. Plueddemann, C.W. Fairall, S. Miller, L. Mahrt, Dean Vickers, and Hans Hersbach, 2013: On the Exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 1589–1610. doi: http://dx.doi.org/10.1175/JPO-D-12-0173.1

  • Fairall, C.W., E.F. Bradley, J.S. Godfrey, G.A. Wick, J.B. Edson, and G.S. Young, 1996a: The cool skin and the warm layer in bulk flux calculations. J. Geophys. Res. 101, 1295-1308. https://doi.org/10.1029/95JC03190

  • Fairall, C.W., E.F. Bradley, D.P. Rogers, J.B. Edson, G.S. Young, 1996b: Bulk parameterization of air-sea fluxes for TOGA COARE. J. Geophys. Res. 101, 3747-3764. https://doi.org/10.1029/95JC03205

  • Fairall, C. W., White, A. B., Edson, J. B., and Hare, J. E.: Integrated Shipboard Measurements of the Marine Boundary Layer, J. Atmos. Ocean. Tech., 14, 338–359, 1997. https://doi.org/10.1175/1520-0426(1997)014<0338:ISMOTM>2.0.CO;2

  • Fairall, C.W., E.F. Bradley, J.E. Hare, A.A. Grachev, and J.B. Edson, 2003: Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Climate 16, 571-591. https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2

  • Fairall, C.W., Mingxi Yang, Ludovic Bariteau, J.B. Edson, D. Helmig, W. McGillis, S. Pezoa, J.E. Hare, B. Huebert, and B. Blomquist, 2011: Implementation of the COARE flux algorithm with CO2, DMS, and O3. J. Geophys. Res., 116, C00F09, https://doi.org/10.1029/2010JC006884

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycoare-0.2.0.tar.gz (18.2 kB view details)

Uploaded Source

Built Distribution

pycoare-0.2.0-py3-none-any.whl (14.4 kB view details)

Uploaded Python 3

File details

Details for the file pycoare-0.2.0.tar.gz.

File metadata

  • Download URL: pycoare-0.2.0.tar.gz
  • Upload date:
  • Size: 18.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pycoare-0.2.0.tar.gz
Algorithm Hash digest
SHA256 db31c9ef9817be9e6843f732924ed0117861a8794288f15ddd0982b9d863daa0
MD5 73071aa7b9a71afc1b4805ec89b401f9
BLAKE2b-256 3b13f44c1e87455159bce9ea1b0c12c61e47dddf483fee0b26a4ffe9a51ce930

See more details on using hashes here.

File details

Details for the file pycoare-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: pycoare-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 14.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for pycoare-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 a7172c11c8ac241c7cde6a2caa964686ef8c10beb0ecee7c1f9fb9a64eec4f15
MD5 c755d3f190ab1c7bfa0abc49bfe018fb
BLAKE2b-256 3896af5448d5a1ea8e7b954441fafa98e6be581c3e3c6576b3a8b862118cbdea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page