Skip to main content

A Python/Cython N-body code, implementing the Comoving Lagrangian Acceleration (COLA) method in the temporal and spatial domains.

Project description

pyCOLA is a multithreaded Python/Cython N-body code, implementing the Comoving Lagrangian Acceleration (COLA) method in the temporal and spatial domains.

pyCOLA is based on the following two papers:

  1. Solving Large Scale Structure in Ten Easy Steps with COLA, S. Tassev, M. Zaldarriaga, D. J. Eisenstein, Journal of Cosmology and Astroparticle Physics, 06, 036 (2013), [arXiv:1301.0322](http://arxiv.org/abs/arXiv:1301.0322)

  2. sCOLA: The N-body COLA Method Extended to the Spatial Domain, S. Tassev, D. J. Eisenstein, B. D. Wandelt, M. Zaldarriaga, (2015)

Please cite them if using this code for scientific research.

pyCOLA requires NumPy <http://www.numpy.org/>_, SciPy, pyFFTW, h5py. Note that pyFFTW v0.9.2 does not support large arrays, so one needs to install the development version from github, where the bug has been fixed.

The pyCOLA documentation can be found here, and the source is on bitbucket.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycola3-0.0.7.tar.gz (477.6 kB view details)

Uploaded Source

Built Distributions

pycola3-0.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (635.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pycola3-0.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (599.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file pycola3-0.0.7.tar.gz.

File metadata

  • Download URL: pycola3-0.0.7.tar.gz
  • Upload date:
  • Size: 477.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.6

File hashes

Hashes for pycola3-0.0.7.tar.gz
Algorithm Hash digest
SHA256 1c0f76f14543a7fe2750ebd185f0c2ed64b9709fb43cdd7be86d3222a819f093
MD5 052a15d064b9838e15870ec0ca043923
BLAKE2b-256 5fde28926c6c644175d1fc16dde7b4820f7a22683947229d1d6bbf836f056346

See more details on using hashes here.

File details

Details for the file pycola3-0.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycola3-0.0.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e9b376a5f4c5cd98885c761e1102211ed633b2979d4380d9bf028754e88d4924
MD5 24eeb92c235bf2912fd41c341caec533
BLAKE2b-256 0dc33124253d90377b230ed2d68cb626e13f88f4d37628e58778f03dc72e5ada

See more details on using hashes here.

File details

Details for the file pycola3-0.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycola3-0.0.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5b0453fe2b8d966b98fd4c9c55634697719c90e8ec2ff2fd7672e6423f6db7de
MD5 d69d4cc300d1a5fa400c717f8d34dc03
BLAKE2b-256 0e3672ca9e687ae29ed5ddee3a433c36c4b8e4c9fbc4f10149be353fa8420a01

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page