Skip to main content

CQL parser for Python

Project description

pycql

Build Status

A pure python CQL parser.

Installation

pip install pycql

Usage

The basic functionality parses the input string to an abstract syntax tree (AST) representation. This AST can then be used to build database filters or similar functionality.

import pycql

ast = pycql.parse(filter_expression)

Testing

The basic functionality can be tested using pytest.

python -m pytest

There is a test project/app to test the Django integration. This is tested using the following command:

python manage.py test testapp

Django integration

For Django there is a default bridging implementation, where all the filters are translated to the Django ORM. In order to use this integration, we need two dictionaries, one mapping the available fields to the Django model fields, and one to map the fields that use choices. Consider the following example models:

from django.contrib.gis.db import models


optional = dict(null=True, blank=True)

class Record(models.Model):
    identifier = models.CharField(max_length=256, unique=True, null=False)
    geometry = models.GeometryField()

    float_attribute = models.FloatField(**optional)
    int_attribute = models.IntegerField(**optional)
    str_attribute = models.CharField(max_length=256, **optional)
    datetime_attribute = models.DateTimeField(**optional)
    choice_attribute = models.PositiveSmallIntegerField(choices=[
                                                                 (1, 'ASCENDING'),
                                                                 (2, 'DESCENDING'),],
                                                        **optional)


class RecordMeta(models.Model):
    record = models.ForeignKey(Record, on_delete=models.CASCADE, related_name='record_metas')

    float_meta_attribute = models.FloatField(**optional)
    int_meta_attribute = models.IntegerField(**optional)
    str_meta_attribute = models.CharField(max_length=256, **optional)
    datetime_meta_attribute = models.DateTimeField(**optional)
    choice_meta_attribute = models.PositiveSmallIntegerField(choices=[
                                                                      (1, 'X'),
                                                                      (2, 'Y'),
                                                                      (3, 'Z')],
                                                             **optional)

Now we can specify the field mappings and mapping choices to be used when applying the filters:

FIELD_MAPPING = {
    'identifier': 'identifier',
    'geometry': 'geometry',
    'floatAttribute': 'float_attribute',
    'intAttribute': 'int_attribute',
    'strAttribute': 'str_attribute',
    'datetimeAttribute': 'datetime_attribute',
    'choiceAttribute': 'choice_attribute',

    # meta fields
    'floatMetaAttribute': 'record_metas__float_meta_attribute',
    'intMetaAttribute': 'record_metas__int_meta_attribute',
    'strMetaAttribute': 'record_metas__str_meta_attribute',
    'datetimeMetaAttribute': 'record_metas__datetime_meta_attribute',
    'choiceMetaAttribute': 'record_metas__choice_meta_attribute',
}

MAPPING_CHOICES = {
    'choiceAttribute': dict(Record._meta.get_field('choice_attribute').choices),
    'choiceMetaAttribute': dict(RecordMeta._meta.get_field('choice_meta_attribute').choices),
}

Finally we are able to connect the CQL AST to the Django database models. We also provide factory functions to parse the timestamps, durations, geometries and envelopes, so that they can be used with the ORM layer:

from pycql.integrations.django import to_filter

cql_expr = 'strMetaAttribute LIKE "%parent%" AND datetimeAttribute BEFORE 2000-01-01T00:00:01Z'

ast = pycql.parse(
    cql_expr, GEOSGeometry, Polygon.from_bbox, parse_datetime,
    parse_duration
)
filters = to_filter(ast, mapping, mapping_choices)

qs = Record.objects.filter(**filters)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycql-0.0.2.tar.gz (19.8 kB view details)

Uploaded Source

Built Distribution

pycql-0.0.2-py3-none-any.whl (25.9 kB view details)

Uploaded Python 3

File details

Details for the file pycql-0.0.2.tar.gz.

File metadata

  • Download URL: pycql-0.0.2.tar.gz
  • Upload date:
  • Size: 19.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.7.3

File hashes

Hashes for pycql-0.0.2.tar.gz
Algorithm Hash digest
SHA256 4e3fc824ffbd5b461ecb4d7b4114bd87e73e70d604d6d38251d105a44079aaf7
MD5 c2bd635c79475fa75af4ec5973851d5b
BLAKE2b-256 3ecc972fda1e0f45fe11b328c6307cbeda69b26ab28e5cd0385bcf8e089b8422

See more details on using hashes here.

Provenance

File details

Details for the file pycql-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: pycql-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 25.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.14.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.35.0 CPython/3.7.3

File hashes

Hashes for pycql-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 174934ea775cb3aa7720cffe2380aaa6f1663d884ed1bdbb394e372792b435d5
MD5 04435492e96a3220203cf4768b019f91
BLAKE2b-256 aee60a97e0069be0c3f6c5e6742e741ff4cc33e1f5d5f19eb337a2a9922849a8

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page