Skip to main content

Official Python Interface for the Bullet Physics SDK specialized for Robotics Simulation and Reinforcement Learning

Project description

pycram_bullet is an easy to use Python module for physics simulation, robotics and deep reinforcement learning based on the Bullet Physics SDK. With pycram_bullet you can load articulated bodies from URDF, SDF and other file formats. pycram_bullet provides forward dynamics simulation, inverse dynamics computation, forward and inverse kinematics and collision detection and ray intersection queries. Aside from physics simulation, pycram_bullet supports to rendering, with a CPU renderer and OpenGL visualization and support for virtual reality headsets.

This is a fork of the official PyBullet project (https://github.com/bulletphysics/bullet3), with the purpose of allowing to spawn a URDF with more than 128 Links.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pycram_bullet-3.2.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pycram_bullet-3.2.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pycram_bullet-3.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pycram_bullet-3.2.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pycram_bullet-3.2.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (38.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file pycram_bullet-3.2.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycram_bullet-3.2.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ac6b49800ed8119243fbc7937b8e99432a9a7d24b6b1bcab3e18abc4f6904235
MD5 1ee340a502e207b69091a8bb4a498d0e
BLAKE2b-256 a7b6b4b820f9bb2bb8c4181c9a6266d71ffdb707acf5e40e0fa54bcbfacdec48

See more details on using hashes here.

File details

Details for the file pycram_bullet-3.2.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycram_bullet-3.2.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 907bf31ca89f392502e110a4cea4146ae35721f4336a4c9369c2b3e270d56a55
MD5 dc0ea8b3105e643e79c567f49c0d71fc
BLAKE2b-256 04ce3b91ff6720cfa46d181cc6305608c5ded73e4a0a8544073d9a2a1747471a

See more details on using hashes here.

File details

Details for the file pycram_bullet-3.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycram_bullet-3.2.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0a4598d2a2da352c7c30f5fe146ae43f2f1e29a30d3b703462be5b7d6e4adafe
MD5 2231b6f3f7e28205479bb4e3c2bee7be
BLAKE2b-256 fc77a94d1b8783863a5a6af959e9c1d53f3d28eb7bed62c6ca37634ad189d111

See more details on using hashes here.

File details

Details for the file pycram_bullet-3.2.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycram_bullet-3.2.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3cb9eb5ea6c7ca359ad6203559c318d18d89d69f8c3acb526e74f13ab15b5b4a
MD5 67daf105a040a6b58727ccbef800e1d6
BLAKE2b-256 7855fdaeba6d324772fb15b06343b2a6ec00d596763c946d9dcc786c9942599a

See more details on using hashes here.

File details

Details for the file pycram_bullet-3.2.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycram_bullet-3.2.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 540fc8fb67316c46ef77d492dff35c96970d10ddfb1f86f4e5bf1321a43452f7
MD5 94bf241d39eb9311960543bb0686bea5
BLAKE2b-256 1a12666cf8b6d8fe742faa1ba5d200d090865cce790aca715e0bffea77435ffd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page