Skip to main content

Python bindings for Yrs

Project description

Build Status Code style: black

pycrdt

CRDTs based on Yrs.

Install

pip install pycrdt

Usage

pycrdt offers the following shared data types:

  • Text: a type similar to a str.
  • Array: a type similar to a list.
  • Map: a type similar to a dict.

You can initialize them with their Python built-in counterparts:

from pycrdt import Text, Array, Map

text0 = Text("Hello")
array0 = Array([0, "foo"])
map0 = Map({"key0": "value0"})

But they are pretty useless on their own. They are just placeholders waiting to be inserted in a shared document. Only then do they really become useful:

from pycrdt import Doc

doc = Doc()
doc["text0"] = text0
doc["array0"] = array0
doc["map0"] = map0

Now you can operate on them as you would expect, for instance:

text0 += ", World!"
array0.append("bar")
map0["key1"] = "value1"

Note that an Array and a Map can hold other shared data types:

map1 = Map({"foo": 1})
array1 = Array([5, 6, 7])

array0.append(map1)
map0["key2"] = array1

Every change to doc (a modified/added/deleted value) will generate an update in the form of some encoded binary data. You can listen to these updates and send them on the wire, so that they can be applied to a remote document.

We say that text0, array0 and map0 are root types of doc. When they got inserted into doc, we gave them a name. For instance, text0 was inserted under "text0". This is how a remote document will retrieve the root types of the document, after applying the received updates:

from pycrdt import Doc, Text, Array, Map

remote_doc = Doc()
remote_doc.apply_updates(updates)

text0 = Text()
array0 = Array()
map0 = Map()
remote_doc["text0"] = text0
remote_doc["array0"] = array0
remote_doc["map0"] = map0

You could say that there is nothing fancy here, it's just about encoding data changes so that they can be applied on another object. But this is where the magic of CRDTs comes into play. Their algorithm ensures that if some changes are done concurrently on different objects representing the same data (for instance on different machines), applying the changes will lead to the same data on all objects. Without such algorithms, this property doesn't hold due to the fact that changes depend on the order in which they are applied, and that they take time to travel on the wire.

The most common example is inserting a different character on a text editor on two machines. Say we start with a blank page on both editors, and the user on machine A inserts "a" at the same time the user on machine B inserts "b". After receiving the other user's update, if no special care is taken, machine A will show "ba" and machine B will show "ab". In other words, their document states will diverge, and thus users won't collaborate on the same document anymore. CRDTs ensure that documents don't diverge, their shared documents will eventually have the same state. It will arbitrary be "ab" or "ba", but it will be the same on both machines.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycrdt-0.3.3.tar.gz (20.8 kB view details)

Uploaded Source

Built Distributions

pycrdt-0.3.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pycrdt-0.3.3-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

pycrdt-0.3.3-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.3-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pycrdt-0.3.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pycrdt-0.3.3-pp39-pypy39_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded PyPy macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.3-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (657.1 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

pycrdt-0.3.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pycrdt-0.3.3-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

pycrdt-0.3.3-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.3-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pycrdt-0.3.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pycrdt-0.3.3-pp38-pypy38_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded PyPy macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.3-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (657.4 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

pycrdt-0.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pycrdt-0.3.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

pycrdt-0.3.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pycrdt-0.3.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.5+ i686

pycrdt-0.3.3-cp312-cp312-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.3-cp312-cp312-macosx_10_7_x86_64.whl (657.1 kB view details)

Uploaded CPython 3.12 macOS 10.7+ x86-64

pycrdt-0.3.3-cp311-none-win_amd64.whl (463.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

pycrdt-0.3.3-cp311-none-win32.whl (434.4 kB view details)

Uploaded CPython 3.11 Windows x86

pycrdt-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pycrdt-0.3.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

pycrdt-0.3.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pycrdt-0.3.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pycrdt-0.3.3-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.3-cp311-cp311-macosx_10_7_x86_64.whl (659.8 kB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pycrdt-0.3.3-cp310-none-win_amd64.whl (463.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

pycrdt-0.3.3-cp310-none-win32.whl (434.4 kB view details)

Uploaded CPython 3.10 Windows x86

pycrdt-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pycrdt-0.3.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

pycrdt-0.3.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pycrdt-0.3.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pycrdt-0.3.3-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.3-cp310-cp310-macosx_10_7_x86_64.whl (659.8 kB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pycrdt-0.3.3-cp39-none-win_amd64.whl (464.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

pycrdt-0.3.3-cp39-none-win32.whl (434.9 kB view details)

Uploaded CPython 3.9 Windows x86

pycrdt-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pycrdt-0.3.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

pycrdt-0.3.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pycrdt-0.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pycrdt-0.3.3-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.3-cp39-cp39-macosx_10_7_x86_64.whl (659.3 kB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pycrdt-0.3.3-cp38-none-win_amd64.whl (463.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

pycrdt-0.3.3-cp38-none-win32.whl (434.4 kB view details)

Uploaded CPython 3.8 Windows x86

pycrdt-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pycrdt-0.3.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

pycrdt-0.3.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pycrdt-0.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pycrdt-0.3.3-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.3-cp38-cp38-macosx_10_7_x86_64.whl (660.5 kB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pycrdt-0.3.3-cp37-none-win_amd64.whl (463.6 kB view details)

Uploaded CPython 3.7 Windows x86-64

pycrdt-0.3.3-cp37-none-win32.whl (434.4 kB view details)

Uploaded CPython 3.7 Windows x86

pycrdt-0.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pycrdt-0.3.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

pycrdt-0.3.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.3-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pycrdt-0.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pycrdt-0.3.3-cp37-cp37m-macosx_10_7_x86_64.whl (660.6 kB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pycrdt-0.3.3.tar.gz.

File metadata

  • Download URL: pycrdt-0.3.3.tar.gz
  • Upload date:
  • Size: 20.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.3.tar.gz
Algorithm Hash digest
SHA256 dbbeccba0d923fa0f506c9b1b198e3ed85eee00dcbd9b3a5142f2a9ff3e6a2cd
MD5 c4e099fcc7fd6297aa837b7f75aeec94
BLAKE2b-256 6665e2db831a172e3d03c2cc93a33098e5f312c6fa4d3f2269f924f6bb3fded7

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9654189adf274f6542a36561f2e7cd602a0ee4b7a151edbeee1898fa36fd127c
MD5 d2ce62672946f6e4b22b78912c256c87
BLAKE2b-256 f5cde99d7eef563fb777a00162ceaff86175e95dbc463bcedbfffd486bd210ab

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 08b421796026b0a3ce388fda54b8522a827cbcd723fa3527554366110bdf6eeb
MD5 689dafc62dce0a5aaaac53972d966d5a
BLAKE2b-256 19c7b53841d5aeb049478a3402591538286f1133e920cdb67415343d48fd6597

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e11a08310c54040236706035b91725f8c74177453ee0a8539560987768703f26
MD5 5a5312bc615e652a26caf3c5339cc885
BLAKE2b-256 f9bdf40b127cd96f554d63fcb13c24d2715ee1edaa7518bba5d8554bb5e2924f

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 34bf368d2a218704a36e2cb7999eab4e5b4bd5ee77f121b4a9a6482ae3dd55c1
MD5 f9b70626d335db0eb68438a294df1d8c
BLAKE2b-256 4fcdf9c6bc46e101bb0974fccc69dd8dfa4915c88785e3c57d14c262ead3c0bd

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2a68a6ec1b80c4b35215c8e6261c45b0d076f75b4d6dc04b303428b311dc4771
MD5 0131db97cc27aa23c6fbeb2f7f5f21e3
BLAKE2b-256 a38040697077f51309e96cd540494e0040752115354e55c8bf29a6276f1f8a04

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 788ac0675b1f9b95ea627a6a63499c7d51dc3c746ca5236ba2a8595c5fffc56e
MD5 20d031fa0d887e070850c2da444b3285
BLAKE2b-256 0e6fc2887633c40a0bda2841a7af17727072a906b063d0f394ba2ad36041680d

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-pp39-pypy39_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-pp39-pypy39_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8a93910e36ed7f3fbeaf1982265fa8d59a51cfe8eb35ab5456b1799cd079b7a6
MD5 9d4053967ac92a2de5ffe736bd5a5144
BLAKE2b-256 7e9065d59ec467b986aa38a1a8607c03d97f94d0a5de3dbf0fdedb9a12552489

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 323d79a8b5dc5c284243bba36881b79576a984b251d4d26da0b1305c2c957c30
MD5 ee09121266f966e658593cabe6753148
BLAKE2b-256 97e613766775f1c9c6f5b6d9d4269d92db62d7078382f25b839a9aae92f7dfab

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 28600baacbb032db01421158b99f655a96cf3cd68aac86937db27435be1b170e
MD5 aa2d26d5ccd3ecbf408dbdef029c0089
BLAKE2b-256 c5baaf8249d798c4019452b09eb42c671304291e46e4db92eb530f95bbebfd15

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e06f07e6a741242cee6c5147913967f5752d85725257de3ec5ff9a8390d42680
MD5 a232a5a26e86cfd6d2efe5ef2e30ae97
BLAKE2b-256 6482273129b94e4b1b65b7e0af30e6c83efd398531fa66f4a3ce7c531536c1d5

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2e4b42e168ad6adb1b4b8e2f5c021788cfa66fcc3aadffe871ea7311f72b0515
MD5 21b08186fe448c8080398fb440b18e61
BLAKE2b-256 4f6a84dd74ab30fbdb2511277e96549338d4786009dcd8b36b0b9d47f64f1d6d

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 57dc4c041f64b366b570b4cb7daa1c88dcd96150b89c52e1c02bf52c24e45b2f
MD5 d014e5e9b67365b41d4ca090d725129a
BLAKE2b-256 19260474e8731e230cb1aaca97b3b848a80902efbc0701ea3493bf6f830d370f

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 30d219e85f6b26a3242a396fe272d9641b25c7c87e61d376bcf400be9fa99a91
MD5 3d84512185add70db0d9764cfacb4f6b
BLAKE2b-256 734b08caab3eaf8bde3c38197935215b3ab1766244faa9361edaa65a3e51c447

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 76fbc7aeba381fca07698c27ca4582305d527b8f80d814fb99f5e76d8fda3dbf
MD5 8e047ab91ab1c115d1e8316d52fd87ca
BLAKE2b-256 ff501cb615854ef81fc4fb780b28c5ada5b16356962d6eeae50e38e12ad91433

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-pp38-pypy38_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-pp38-pypy38_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e594c8b8110acf23a01349b13c41f37946395663fc0128b5d374d03094c0a136
MD5 02ec30598e429f57342493ee2bbcd3f8
BLAKE2b-256 cb8f1e75cc6bfda27f5aaba41cd9a8601eb8d1801451369f5ba16fdf56e66e39

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 fde5e574655f16d1d7417c61b093ec28d5103c4457d0fb02bfbeffcf4fe223ac
MD5 5e280f5333379c71937c455a0c8efb99
BLAKE2b-256 be3f275534a4bbc562b2a136b58d23e11af380ce05da1ba340fbf9ef6859e4d4

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b7a65728e0f804aebb46a0b2fa604341c25782a2f6c0da8c0ea4f3bec758eae5
MD5 d9f08ff40b7a3e7d7042402d0651ad43
BLAKE2b-256 fb9906d7da9465ef7ca124d6097b2cdb7684c00063fdf1405dad48a8ace608d6

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 fc2547926dbf4ba4a0c6daa0a331144799938cd65f2261aabb3fdb5df59ef38d
MD5 c85cd7ff3f0d10660ae5e7e655fedf63
BLAKE2b-256 7395985da0fa1b6552dcacd4c89f314386403c660f35dd18cd3d20cb0f699060

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 961df8781f8b973dfa3705d163d233b71883cb522d5db8570341283e49dfee5b
MD5 691efcf7415095b1a0524492826c501b
BLAKE2b-256 61ed8b1ae9ef0f998895e30f9366066ddf8b3bd31e109d7fea310e035746f6fd

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 ebaf6274070e59d76e17923d36cbfcbb3b602c04c2fa32b327015b15eacef2b4
MD5 aa4f1c94d7d36bc4ea76a92f58535a6d
BLAKE2b-256 89ad046ce9ef18fe4a801ac617bbb0ae7585f1e914fdfd815375661d25aff9c5

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 814eb5355be6367d7374eaf069e00c861e276f145042895cfa2e38229dcbc572
MD5 2261b9e9a75114f85de4a3e8b0f52ae2
BLAKE2b-256 8a370644eb6584d5b7db2c77b1843b8bcab4039c1b98d04127360ee7902b69b4

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 5e6b1d770d69f8c5043e95969f346a8d7615a6e9c50967bb3ea971437aebafa1
MD5 f5483be09b63328ebd5b615b1b3f3677
BLAKE2b-256 4f58c47b12b9c6bb009dfdf6e6c3b1c0b589ffd31997ee8c8bed5c5d8808a25c

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp312-cp312-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp312-cp312-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8cd12728d5c89ef073db8f20d4064b2ad521394079d2cdedb369a646666289f5
MD5 cfa4757e842802493c26d6d6786ebf8c
BLAKE2b-256 3d43a2b3a6205f20e8103a3084726058a9899240604569c0ae39b20636494f89

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp312-cp312-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp312-cp312-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f90ee9b6188c4a51451be57baa3efdc637d9c67e0afb81102a2cfc9a462412b8
MD5 852684f6c3ccbc83b3d48d5e3c5575ca
BLAKE2b-256 29da085c51ad857bbec4fe99643d8a2de62ef6c4705aefec953bb30d972863e2

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp311-none-win_amd64.whl.

File metadata

  • Download URL: pycrdt-0.3.3-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 463.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.3-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 22d2fc747e6fcbffff7d618d0ee4121a8d4a00b88d24712d699ab1944ba0d336
MD5 692e1b782b13fbf4c53e5862be05c7c9
BLAKE2b-256 e0019667c02153d48ac7de129cf513ea48b7e743927785ed96f5dcf4b1f4a937

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp311-none-win32.whl.

File metadata

  • Download URL: pycrdt-0.3.3-cp311-none-win32.whl
  • Upload date:
  • Size: 434.4 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.3-cp311-none-win32.whl
Algorithm Hash digest
SHA256 a50b3873f58387a1df73e18f3b4ae72cc0bdc30377fb4c85b52a24a3abcdc05b
MD5 102679f6e4ede4d94c67ff5c36020a8e
BLAKE2b-256 2df6dc021608d634bd78d850f49b9c12adac032973586ffbd17f7ed183a318e0

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6895dfada918d4e5d0459420314c515956e63271c48b0b072dad01cd042e5e55
MD5 c5c439b2f344ec0faa65d5fa748106ae
BLAKE2b-256 0f95a37751081b68786154966f036b240391f2e9945f3db7b0dc718f53877cd3

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 5d76f2eb546c97ee60db5404272b09e79a3fddff3caab0252815a814d5e316b5
MD5 d1f9002c17e8eec9659035d3feecae9a
BLAKE2b-256 03ebacca781a82dc7fa0d48d6a09cd4d4c821a923e41dddedf53b4626b7a6eaf

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 cc1252d6f02d0e3f5d054a5f1eccdf7c4db40a54670e41cd0c4638f1a1350e8e
MD5 409b3dfa5ff0e07272ecf7aa55284241
BLAKE2b-256 0cfa6fcf2d599377840befe010de663aa1a6d9c19af9433fe94cd471c717bc1e

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 8052456a7d7e6a5d9a24a4d3a358b705983c07ed36b41c62a0ea3e52b78b798d
MD5 4d5ae4d01c78a33e65378b5d1eff0a92
BLAKE2b-256 e0d5803055dc11d67d73b0fba8f15b23e5d70c8fea5351d7c271283e62aef26c

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3969f990cbebbaebaad2d5398d10642822a1fb532d4d7d9bcf359f9bbb8a2bdd
MD5 7b5f5f001eaa16e84334519ea80b7516
BLAKE2b-256 e44730b764dad0dc89ae06e21c00277c63dec89c4cde938c452f5984b037db5f

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 576844386756cf0c6493345186683b5f4e3d0bad2f2e18a6c94d26c6da0a8f91
MD5 415e02c743c9f10b9e252a1423ae23d3
BLAKE2b-256 e299ffcd40f66d0da0338c4a063f0c8b808ea2616e449f6ee1e49b32ad6436d6

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 da32eb685190d30ceb620804dead785f0f478e0634754312572d8780c3f9eb17
MD5 1f3e8d34a0d54cf12caa295ea2f48706
BLAKE2b-256 73ac7dfda936e9db684533a0083edca36aff08581e076c5f77f2aa3ecb1ff664

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 87b2da00cac6b851538fca10a250b7f59d9da908d10528cc41a4e305e237fe43
MD5 be4a42c84d59ab443422780ce9dad950
BLAKE2b-256 c994b269b6a2770bbf59db9801d0ad02eba4e0c6e18a4f5c52d115a8ed894b79

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp310-none-win_amd64.whl.

File metadata

  • Download URL: pycrdt-0.3.3-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 463.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.3-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 dafa18ce3edc3cc226eed8a69ca4bd2da16fc934c46e7f339cf508eefcc23e96
MD5 26e403da9bbc538c1dcfe49b1cef54de
BLAKE2b-256 2a408889193b9688797e2753921d145c81e6c92e6a19bb122a7e46c21512978c

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp310-none-win32.whl.

File metadata

  • Download URL: pycrdt-0.3.3-cp310-none-win32.whl
  • Upload date:
  • Size: 434.4 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.3-cp310-none-win32.whl
Algorithm Hash digest
SHA256 bbb9a95fca85627a710898c2926d3d287fbb20327cc98138fe65feb0cb9004a8
MD5 87154eda1f536328e07a41a24030c72c
BLAKE2b-256 d7901952ff89f9145d66c6d572b983175794a5d72d745389be78d180881c738e

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7c3bbec3748039df6e3f38bc0b05b4b95f4b2f8caae857629d516702305c5659
MD5 795530cc3cc9c39ccf451e3fb65ec2f7
BLAKE2b-256 9daee201eb9ab87d5eb484b47f88590bb7854e5ef3bcdf9cd02063987c20a65e

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 b0b130ef3882cf0ce39b4f41b36dc17e4a15830844cd4e2c5d727cc478f0ccbf
MD5 7fe500e05bbf417c7494a7c03f3a085c
BLAKE2b-256 68db2e1ef7804952373cb6ba2a9f87142850116820f8541666762dfba49f7aa7

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e8ebd364d6d21fa57b1a75e3560c5818d8a568280ec56a995de382b4bf447dd0
MD5 11766be6b43c499fb7e9eb6f084d7e77
BLAKE2b-256 404934a3d80233375ec1c49c6a8675a4f245c64485014e42d5c58bf991d9d39f

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 2a14d7808ca3783b7c1f79d874df4e72fc530c6300c326f03c7c05ab0e5e3dca
MD5 f667b0a02f74878835cf2efc77332e43
BLAKE2b-256 32a4dcbbce43095ab66cfbe9f0c10de91f0797d4c2b82b3c4f7bdc23c79a5666

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 abf3c122d831e0cbf6e9282865aa7f1504b7380080012b481de527ce0887a0c8
MD5 e7c43b6b95af19d3251a898a4fe30430
BLAKE2b-256 97cf6451aad1eea71565c621e99c52bd5a5ffe6820d03ea0b7b39dbf4e796337

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 071d8b2e1eb149abb98e5aede0fb109b57c476efcb675dcc2a709a655c3e1307
MD5 f127f8fd8f2f4a3b64829bb67a285065
BLAKE2b-256 fd6d8ea8bace844a344a6a1fc588438a3f9778feb49815c258c4791f901bdb19

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4b6719b286f6f79def5550a19dd06d947a830f167b5a0aa9a4c46540b6ccca6b
MD5 c158ecc4d9c6abbb5ad8c767c2b91e21
BLAKE2b-256 9cda195ecb96881e47fae3342b4f0815261af81f2601c1bedcdbf30950768ba2

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d4709cc716b9b5641e33324f978c7346ce882cf533e2e7a8df2dded177a8eca3
MD5 e85e79631b58592b1e2e46a2f9c45a2f
BLAKE2b-256 ec5c7750d4f1e49bb3a863930026c08901a11f575ba9db9d8423d45f80339345

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp39-none-win_amd64.whl.

File metadata

  • Download URL: pycrdt-0.3.3-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 464.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.3-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 bbab0e83f9db93005b978e67404b51410850e6e057c2eba4cbb83e21f3fd09a0
MD5 6f6a0773abfab140f3012ba0d62ee90e
BLAKE2b-256 77f09eaa759070505208600fec2c97783cae25fcb66973d5ca23505a8fe16289

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp39-none-win32.whl.

File metadata

  • Download URL: pycrdt-0.3.3-cp39-none-win32.whl
  • Upload date:
  • Size: 434.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.3-cp39-none-win32.whl
Algorithm Hash digest
SHA256 f1c76215e241100a87a4c35b504515beb8a521556c47e38af1bc469fd9bce6c8
MD5 e7e54acbed0027263db3791e2c66cdd8
BLAKE2b-256 474b1c54bf92ac070669aa030bcf1e99de795d035e35b460d1c44be0fa41e140

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b1cbd8b0c71f633e3fcd22d7b1fdf0a350bcba4ab9edea4b024a8d9afcb3d1ba
MD5 f480760da960e202901389d5e23fe20a
BLAKE2b-256 6733d00c1fb25c356b8e8cc36c6638c92b0f4ae6789e55938a5d5e42195a09ed

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a0275c77fe934d58726f9713b735e8b7304282a83d5f754b65b360386651ad03
MD5 abd1f16e4fb09d24731a8c3c9720ec57
BLAKE2b-256 375a6ccbad1af2b3e3ffecbec6818b9a6abedbfbb47753e29ebb61fc45c6228a

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 61546479f997cb157ff8de7a54eca9f0a207b2d0d2943d640d93b19bfd5890a4
MD5 5cdc6c50a88552741c62fefcea5798f9
BLAKE2b-256 56c398753e60ae01f663ba327b1b328235b33078b9a7d25cc8427367589bff1c

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 61e0019b46d8c4e0b0fe85e16dd6c1a68f44755a27ba4c149ab3240863540ef3
MD5 a893b7d849890a1ad2093d82b33960b0
BLAKE2b-256 840bb8ecc95e35bdd56c615c395a167254ab5aa7585e5c4b3517faa4af6f0ff5

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3cbeba7dc7dc45faa04e63e818901141f3770b3303d15b86a11d77ffd66d3026
MD5 74500b683b2218195e9d1dbcb3d277de
BLAKE2b-256 2b5cefb55b34a364bfe1d09f5304525ca00e015e5478bc1fd9874130ff3f6247

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 440e3d273793d29b657bfb6447ef417c1577739448b82f2fbd14bf1ce0eb0a58
MD5 ca2dfb3e20c83b228766cec77d767d04
BLAKE2b-256 900f8d73048ac2abe39116b9d57f70103372802a219eabf5bbf43b131a79e642

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b131ee79117e55bcaf06d675c9e2f3c9b2f0bf11147e1d21f88181831440281f
MD5 8bf7f74954c4d53c2bcb1c32ec7bb453
BLAKE2b-256 d35ad9d52cc8348d5fbb50ad4067e6309a3ee5fcff0efe1f38f8d6364692e33c

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 dee2cc9c731fd9fc3e2e7a89da4a608d984d201b5b9d775f2a99eb0fb808b59e
MD5 f87d70f09403895f031553a17404fe8d
BLAKE2b-256 60b98115031cd45b3e5c72c9ef942c69f7f3bd37489a8b7f2b81b1dda353d206

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp38-none-win_amd64.whl.

File metadata

  • Download URL: pycrdt-0.3.3-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 463.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.3-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 3a0f7234f054afb3b8ccf0f833545950f7c14992799337aaf8e3e54c38f71d85
MD5 cf49e31134e3d29c445960bceec64c74
BLAKE2b-256 781696566754be3837b05a3f6701039f18efa2d828344a92d37aaee252ff20c6

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp38-none-win32.whl.

File metadata

  • Download URL: pycrdt-0.3.3-cp38-none-win32.whl
  • Upload date:
  • Size: 434.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.3-cp38-none-win32.whl
Algorithm Hash digest
SHA256 4d3ed56f72d9a59d14cf77786afc425b6f05fa656a94cf33aa1bd8212aeff2b6
MD5 3fde593a966e25aa5da1bc468f0dc72f
BLAKE2b-256 ac8a4f6c5b5e6b174112f80475ef5fa6254d10601f28a3fd6d101591d7fa5bed

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0af04ef845a545a8877993a137884316c903c39edbd7e3f1a5be49c486d82016
MD5 19f1379e97ba4976f33793947806d32f
BLAKE2b-256 b51f6172cd3e3499c94238652560aed25f13c635070aefde304a2e9c45e9fc71

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 cbbc043fad640f4a00a4a7f9acce9a68151adbb8a9eae689d3ac39f1633780b8
MD5 6c0d8a10a2d9a51c55b590482068ce2f
BLAKE2b-256 57153c177b6dc18706bdc8c0930719092b7130e6e72aa4f32be38a2c89788351

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 41c2a78ad55639b841a438c266b9f7e7589e589255d94973e3b2a1d5ae1ee587
MD5 96bb24563726990ab288bee35cbcf7d1
BLAKE2b-256 2e75dd1ca4281a4f56cdc5957666a84c4e919c4c6d786e21d96d0a44f5ae3711

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 a7f734de97426236ae0524e6806ce679d7e3c323f6a012be672524d8fbb8278c
MD5 44e8f143ceaa8acc4d04be695b7a6c96
BLAKE2b-256 010369bb17a28848a88683a6531583195657b383da2e1d5ba828984a0ec450fb

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 84501328106109966a45fbfeee27c9c3c897af70d0b9cff9d5798b8e286bf1f5
MD5 00a0255d98b4c0f4bc25b3c546a7c101
BLAKE2b-256 484576628fa399f0dface98beda970324ce907efdd4e9f1204d3386fa9c3861a

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 0fd8675ee64d74b97933e6901f7c1b78dff2faa8a2c8ef39a183c5658d6e8901
MD5 f9b468b6738844e0ad4255fa0ec146b6
BLAKE2b-256 a739cd76d5b351a78de3211822c676d169443491576f0dc93bf2ee5f97ec904f

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f952c69976df0dbfccadd0b8cdbd9633208fa34f27495d7d0e6096c5bf9b9905
MD5 d000c254167b2acde41eeb2de5b5af2c
BLAKE2b-256 5b8ae5344739cabeb18b81bac5a0c83940f9f9e6eae9cde151028233be3429c8

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 0ed93703536159a60a407338e270acdcdc42b16207b198fe592e9e94f1e9ce1e
MD5 ee910373209773acc3ae65417162a576
BLAKE2b-256 db85e9488cfcb9230dfc6fae47ea9b718845a008a853c6fc15661e6bb3c7fd5a

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp37-none-win_amd64.whl.

File metadata

  • Download URL: pycrdt-0.3.3-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 463.6 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.3-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 049794989e855ff6a982df66101bd7ed7061bc3110bd297db8600a963234a32c
MD5 c6ad83b0e3dc98a68a1131b47a646dfb
BLAKE2b-256 598ad9fafbc74d2fd5c1e4ec35d2b0e0b7da9ff1e3847aeea449e7f215cfbdd1

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp37-none-win32.whl.

File metadata

  • Download URL: pycrdt-0.3.3-cp37-none-win32.whl
  • Upload date:
  • Size: 434.4 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.3-cp37-none-win32.whl
Algorithm Hash digest
SHA256 03d1e7f75faf4dd377d48e6ce9ca3f10376c0eaa206233271ac0e9fb97ac11a3
MD5 945ecf4807b7d59ea0bcef87f3acee17
BLAKE2b-256 af7eabbc22c705ee2d9b8149d28a5b8a70bd4beacc7dd21f6566a4cef65f7dc9

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 405a9c0b105457de31506c532d3715c9b879bca18ae704b2878ba1228b6571af
MD5 fe0a99e6485532c7dfd7c2a950fe375f
BLAKE2b-256 a51c7b2e64161870a159001a7ce0b960152e6a961a8d9c6e8e2a58cf1234e5b8

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ed84e534a09ff8e7adadc295d0256d82f558a76441f3b7f75124aad058d89826
MD5 62a1eed28b1156ef8d5a4a77489e2800
BLAKE2b-256 8ec524c7f3c400ff7fc16fa09f2143acfa5236fc74d04a270e06cafbfc62fa90

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 5af993340a1680eb9bbcadd8be10fc65a93adf36edf60e875b259efa319a0259
MD5 bbe51c5a3a737ef0ac60b2a0b1d01dbf
BLAKE2b-256 6000a4ef17bc81828c0a4c154ff40f763aebcc9b4e6248cf6843ee711410c30e

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 c6ae62c010e3289a0a278ff33f32c15e81d72a63c66499520710fcc6338a9e36
MD5 fcff665125041928c50b10a062b24c50
BLAKE2b-256 38d672c3b90190bcabf9d2b0f259e87e587ae0311ef2f240740376b6c259c48c

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 de447ff5e526c8c899f1ffdcc125b8314c6f23ca22d85117b7c38cbf76671a19
MD5 8fbc35841de6e84a9e394a5c3d0fc581
BLAKE2b-256 4b7e3c8ce379553bbc67ffdc14b3bbdcc5713eaa3b18ce6e24bf65f3228d070f

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 dc04b6d053af7d909c60b95cf963b354445af6798c91551bbcefce8c2a19d77a
MD5 ae7fa950c8b6dbc3b830ef3e796e387e
BLAKE2b-256 a5d1032d1ecb2417f779c27e9e1e04a4a7e8293f0a1a7682dc600422ae08e2d5

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.3-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.3-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 e5b5bfe30003e9397221d0cc7bb3ea72ea9f1f8f25251b2e81567ad7148e2ee3
MD5 242214422ab00d6061c5d1aeaf3d0a8a
BLAKE2b-256 bace3b78a748dd37a53a94ca0d2c153567d5d93e0b009005784c42f96e41d3fe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page