CTC beam search decoder for speech recognition.
Project description
pyctcdecode
A fast and feature-rich CTC beam search decoder for speech recognition written in Python, offering n-gram (kenlm) language model support similar to DeepSpeech, but incorporating many new features such as byte pair encoding to support modern architectures like Nvidia's Conformer-CTC or Facebooks's Wav2Vec2.
pip install .
Main Features:
- 🔥 hotword boosting
- 🤖 handling of BPE vocabulary
- 👥 multi-LM support for 2+ models
- 🕒 stateful LM for realtime decoding
- ✨ native frame index annotation of words
- 💨 fast runtime, comparable to C++ implementation
- 🐍 easy to modify Python code
Quick Start:
import kenlm
from pyctcdecode import build_ctcdecoder
labels = [" ", "b", "u", "g"] # tokens as they appear in logits
kenlm_model = kenlm.Model("/my/dir/kenlm_model.binary") # load kenlm model
decoder = build_ctcdecoder(
labels,
kenlm_model,
alpha=0.5, # tuned on a val set
beta=1.0, # tuned on a val set
)
text = decoder.decode(logits) # decode via shallow fusion
if the vocabulary is BPE based, adjust the labels and set the is_bpe
flag (merging of tokens for the LM is handled automatically):
labels = ["<unk>", "▁bug", "s", "▁bunny"]
decoder = build_ctcdecoder(
labels,
kenlm_model,
is_bpe=True,
)
text = decoder.decode(logits)
improve domain specificity by adding hotwords during inference:
hotword_list = ["looney tunes", "anthropomorphic"]
text = decoder.decode(logits, hotword_list=hotword_list)
batch support via multiprocessing:
from multiprocessing import Pool
with Pool() as pool:
text_list = decoder.decode_batch(logits_list, pool)
use pyctcdecode
for a production Conformer-CTC model:
import nemo.collections.asr as nemo_asr
asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained(
model_name='stt_en_conformer_ctc_small'
)
logits = asr_model.transcribe(["my_file.wav"], logprobs=True)[0].cpu().detach().numpy()
decoder = build_ctcdecoder(asr_model.decoder.vocabulary, is_bpe=True)
decoder.decode(logits)
The tutorials folder contains many well documented notebook examples on how to run speech recognition from scratch using pretrained models from Nvidia's NeMo and Huggingface/Facebook's Wav2Vec2.
For more details on how to use all of pyctcdecode's features, have a look at our main tutorial.
Why pyctcdecode?
The flexibility of using Python allows us to implement various new features while keeping runtime competitive through little tricks like caching and beam pruning. When comparing pyctcdecode's runtime and accuracy to a standard C++ decoders, we see favorable trade offs between speed and accuracy, see code here.
Python also allows us to do nifty things like hotword support (at inference time) with only a few lines of code.
The full beam results contain the language model state to enable real time inference as well as word based logit indices (frames) to calculate timing and confidence scores of individual words natively through the decoding process.
Additional features such as BPE vocabulary as well as examples of pyctcdecode as part of a full speech recognition pipeline can be found in the tutorials section.
Resources:
- NeMo and Wav2Vec2
- CTC blog post
- Beam search by Andrew Ng
License:
Licensed under the Apache 2.0 License. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Copyright 2021-present Kensho Technologies, LLC. The present date is determined by the timestamp of the most recent commit in the repository.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pyctcdecode-0.0.1.tar.gz
.
File metadata
- Download URL: pyctcdecode-0.0.1.tar.gz
- Upload date:
- Size: 34.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.5.0.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7a548f9c86f058ec3e5db305a99e953d409ea9862b94662bb9d5df145aa655f4 |
|
MD5 | 8e456b6db7a99497224399ad775e42cb |
|
BLAKE2b-256 | 279613dbdece6e079135c8e7a4e04bb5acebd7c7bce6170002ff62bbab4df471 |
File details
Details for the file pyctcdecode-0.0.1-py2.py3-none-any.whl
.
File metadata
- Download URL: pyctcdecode-0.0.1-py2.py3-none-any.whl
- Upload date:
- Size: 35.3 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.5.0.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.7.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b4663b4f4faa4a234e5eeb40f62c22d757f185b3ffef88bfc07306418e58dff1 |
|
MD5 | 8039cce209fa18296a478efc61bcbb06 |
|
BLAKE2b-256 | ec707cfd9fdf002c9fdda8b89d4e5eaac23df842973684bc16bb8bd26de18d5c |