Skip to main content

Python binding for cvodes from the sundials library.

Project description

pycvodes provides a Python binding to the Ordinary Differential Equation integration routines from cvodes in the SUNDIALS suite. pcyvodes allows a user to numerically integrate (systems of) differential equations. Note that routines for sensitivity analysis is not yet exposed in this binding (which makes the functionality essentially the same as cvode).

The following multistep methods are available:

• bdf
• adams

Note that bdf (as an implicit stepper) require a user supplied callback for calculating the jacobian.

Documentation

Autogenerated API documentation for latest stable release is found here: https://pythonhosted.org/pycvodes (and development docs for the current master branch are found here: http://hera.physchem.kth.se/~pycvodes/branches/master/html).

Installation

Simplest way to install is to use the conda package manager:

```\$ conda install -c bjodah pycvodes pytest
\$ python -m pytest --pyargs pycvodes
```

tests should pass.

Binary distribution is available here: https://anaconda.org/bjodah/pycvodes

Source distribution is available here: https://pypi.python.org/pypi/pycvodes

Examples

The classic van der Pol oscillator (see examples/van_der_pol.py)

```>>> import numpy as np
>>> from pycvodes import integrate_predefined  # also: integrate_adaptive
>>> mu = 1.0
>>> def f(t, y, dydt):
...     dydt[0] = y[1]
...     dydt[1] = -y[0] + mu*y[1]*(1 - y[0]**2)
...
>>> def j(t, y, Jmat, dfdt=None, fy=None):
...     Jmat[0, 0] = 0
...     Jmat[0, 1] = 1
...     Jmat[1, 0] = -1 - mu*2*y[1]*y[0]
...     Jmat[1, 1] = mu*(1 - y[0]**2)
...     if dfdt is not None:
...         dfdt[:] = 0
...
>>> y0 = [1, 0]; dt0=1e-8; t0=0.0; atol=1e-8; rtol=1e-8
>>> tout = np.linspace(0, 10.0, 200)
>>> yout, info = integrate_predefined(f, j, y0, tout, atol, rtol, dt0,
...                                   method='bdf')
>>> import matplotlib.pyplot as plt
>>> series = plt.plot(tout, yout)
>>> plt.show()  # doctest: +SKIP
```

For more examples see examples/, and rendered jupyter notebooks here: http://hera.physchem.kth.se/~pycvodes/branches/master/examples

License

The source code is Open Source and is released under the simplified 2-clause BSD license. See LICENSE for further details.

Contributors are welcome to suggest improvements at https://github.com/bjodah/pycvodes

Author

Björn I. Dahlgren, contact:

• gmail address: bjodah
• kth.se address: bda

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for pycvodes, version 0.4.4
Filename, size File type Python version Upload date Hashes
Filename, size pycvodes-0.4.4.tar.gz (79.5 kB) File type Source Python version None Upload date Hashes