This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description
###############################################################################
###############################################################################
# Copyright 2014 Kyle S. Hickmann and
# The Administrators of the Tulane Educational Fund
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###############################################################################
###############################################################################

pyda separates ensemble generation and filtering/analysis into
separate class objects. These are then used together in an
assimilation class object. This allows the user to code the ensemble
generation, assimilation, and filtering/analysis steps
separately. Allowing concentration on the element of the assimilation
process they are interested in refining. This also allows a user to
code up their particular ensemble generation method and use the
assimilation and filtering classes we have provided to perform the
assimilation. If you have written a time-dependent simulation in
python then pyda will handle the data assimilation problem. There is
minimal support for visualization and assimilation evaluation as well.

This package includes:
- Classes to generate an ensemble of runs from a simulation
- Classes to perform various flavors of Ensemble Kalman filtering
- Classes to perform various particle filtering and sequential
monte carlo filtering
- Classes to control interaction between ensemble generation, data,
and analysis for data assimilation
- Multiple examples to experiment with data assimilation
- Functions to visualize data assimilation process occurring in the exmples
- Functions to evaluate effectiveness of data assimilation process

#############################################
#############################################
Non-Standard Packages Used:
Numpy and Matplotlib
#############################################

QUICK START:

Just run
>> python setup.py install

Then, from the examples directory, try
>> python SIR_enkf1.py

Directory Structure:

pyda1.0/
MANIFEST.in
LICENSE
README
setup.py
ez_setup.py
examples/
SIR_enkf1.py
:
data/
:
figures/
:

pyda/
__init__.py
analysis_generator/
__init__.py
analysis_generator_class.py
:
kf/
__init__.py
enkf1.py
:
pf/
__init__.py
:
assimilation/
__init__.py
assimilation_current.py
data_assimilation_class.py
:
ensemble_generator/
__init__.py
ensemble_generator_class.py
SIRensemble.py
:
utilities/
__init__.py
epiODElib.py
:

Description:
------------

examples directory:

SIR_enkf1.py, an implementation of ensemble Kalman Filter
data assimilation using pyda. This serves as a basic example
of how the pyda classes are used together with a simulation.

pyda directory:

This contains class files and helper module files in the
utilities directory.

analysis_generator:

Here classes are defined to implement data assimilation
filters. The analysis classes are meant to be derived all from
the AnalysisGeneratorClass defined in
analysis_generator_class.py. Data assimilation filters are
divided into Kalman Filter type and Particle Filter type.

kf:

An example of an Ensemble Kalman filter analysis class is
defined in enkf1.py. Other variants of Kalman filters are to
be included here.

pf:

Variants of particle filter and sequential monte carlo
analysis schemes are meant to be included here.

assimilation:

Beyond generating ensembles and producing filtered analysis
ensembles data assimilation must control exactly how these
schemes interact with data. In this directory classes that
handle this are included. All data assimilation classes are
meant to be derived from the DataAssimilationClass defined in
data_assimilation_class.py. DA_current defined in
assimilation_current.py is an example of such a class.

ensemble_generator:

The user must already have software for simulation in place to
use pyda. If this is the case then an ensemble generator class
will control how the simulation produces forecasts. Classes
are all derived from EnsembleGeneratorClass which is defined
in ensemble_generator_class.py. SIRensemble.py defines a
specific class to call on SIR epidemic simulation defined in
the epiODElib.py module under utilities/.

utilities:

This is a directory of helper modules. Currently this contains
epiODEli.py which implements Runge-Kutta solvers for several
differential equation based epidemic models. This directory
also contains a basic visualization module AssimilationVis.py
which uses matplotlib to visualize ensemble and analysis
solutions.
Release History

Release History

1.0

This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date
pyda-1.0.tar.gz (1.8 MB) Copy SHA256 Checksum SHA256 Source Apr 11, 2014

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting