Skip to main content

Intel(R) Data Analytics Acceleration Library

Project description

Python bindings to Intel® Data Analytics Acceleration Library -- optimized building blocks for all data analytics stages, from data preparation to data mining & machine learning. Optimizes data ingestion and algorithmic compute together for the highest performance. Supports offline, streaming, and distributed usage models to meet a range of application needs. Highly tuned for efficient data layout, blocking, multi-threading, vectorization -- helping applications deliver better predictions faster, and enabling analysis of larger data sets with the same compute resources.

One of many Intel® accelerated Python packages and performance library runtimes available on PyPI, and as part of Intel® Distribution for Python.

For latest release updates and security notifications, please subscribe to the Intel® Distribution for Python Community forum.

Free to use and redistribute pursuant to the Intel Simplified Software License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pydaal-2019.0.0.20180713-cp36-cp36m-win_amd64.whl (36.1 MB view details)

Uploaded CPython 3.6m Windows x86-64

pydaal-2019.0.0.20180713-cp36-cp36m-macosx_10_12_intel.macosx_10_12_x86_64.whl (57.3 MB view details)

Uploaded CPython 3.6m macOS 10.12+ intel macOS 10.12+ x86-64

pydaal-2019.0.0.20180713-cp27-cp27m-macosx_10_12_intel.macosx_10_12_x86_64.whl (57.6 MB view details)

Uploaded CPython 2.7m macOS 10.12+ intel macOS 10.12+ x86-64

File details

Details for the file pydaal-2019.0.0.20180713-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pydaal-2019.0.0.20180713-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 36.1 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.5.4

File hashes

Hashes for pydaal-2019.0.0.20180713-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 b7a75b88e762687f6637b46dce875f0e9ddc6867ea4344f6beed7d36335fc4b7
MD5 ca8081ad7f6da50274b7f4fe25ea1b0b
BLAKE2b-256 e634105e91c755937344572fc0a957168f9e7ce502868e3fda14b2ea0fcdaa7b

See more details on using hashes here.

File details

Details for the file pydaal-2019.0.0.20180713-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pydaal-2019.0.0.20180713-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 43.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/3.5.4

File hashes

Hashes for pydaal-2019.0.0.20180713-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f8995e45c7c40e5f067d024d37fe4a550dd77728aef5fc0c5e407e663eabf103
MD5 9957de783a8076e99ec7bc3dc160224a
BLAKE2b-256 3ca6bf2ffb939f4cdd35208cdcbc5ebc4d16a7c8ea68ad43c14a823dbb86006a

See more details on using hashes here.

File details

Details for the file pydaal-2019.0.0.20180713-cp36-cp36m-macosx_10_12_intel.macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pydaal-2019.0.0.20180713-cp36-cp36m-macosx_10_12_intel.macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 d42b4cde5e357bfa85b6e9e2c5aa93ddf8af18c62d2c1ad181bbd72975b42100
MD5 9641052aa6671e1fa384d78e81ed57ac
BLAKE2b-256 5c333c8c56933ccf0b37b73a65a62b4e9675a1d22bf8311b0ed45d8bd84cbc04

See more details on using hashes here.

File details

Details for the file pydaal-2019.0.0.20180713-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pydaal-2019.0.0.20180713-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 43.7 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/27.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.5.2

File hashes

Hashes for pydaal-2019.0.0.20180713-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d53acd1381218e90538745defecc3f8ad65fac00510b8cbb8d863a0344a81bd9
MD5 bc875681eb54f687ba8221ff084f15bd
BLAKE2b-256 2f81e991a151fd9083220adf9e23cffe7da8dc585a5f93d4f75cbb45ef4196fd

See more details on using hashes here.

File details

Details for the file pydaal-2019.0.0.20180713-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pydaal-2019.0.0.20180713-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b74bf2fe8a1c194f8033d15427ab06bcdcf0d4db23535795eb89b1ebc13ef081
MD5 533156b7c744e414671de2495b3cb58f
BLAKE2b-256 f385233421fff420eabe4aadb92f4e5a2bb935d036c18058bad635372c5cf2fd

See more details on using hashes here.

File details

Details for the file pydaal-2019.0.0.20180713-cp27-cp27m-macosx_10_12_intel.macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for pydaal-2019.0.0.20180713-cp27-cp27m-macosx_10_12_intel.macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 35811c02ee4dc56ebdb0daefb79356b4ab1af2206a0dc4ff028804d9dbe55c04
MD5 6dd668f417e8300f6a9c7934229a75f8
BLAKE2b-256 f3e240d892b836349659f6563473fdbc69f0e745ae4c07d2777dd82c983ce04e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page