Skip to main content

Package to analyse stochastic time series data

Project description

PyDaddy

A Python package to discover stochastic differential equations from time series data.

Documentation Status

PyDaddy is a comprehensive and easy to use python package to discover data-derived stochastic differential equations from time series data. PyDaddy takes the time series of state variable $x$, scalar or 2-dimensional vector, as input and discovers an SDE of the form:

$$ \frac{dx}{dt} = f(x) + g(x) \cdot \eta(t) $$

where $\eta(t)$ is Gaussian white noise. The function $f$ is called the drift, and governs the deterministic part of the dynamics. $g^2$ is called the diffusion and governs the stochastic part of the dynamics.

An example summary plot generated by PyDaddy, for a vector time series dataset.

PyDaddy also provides a range of functionality such as equation-learning for the drift and diffusion functions using sparse regresssion, a suite of diagnostic functions, etc.. For more details on how to use the package, check out the example notebooks and documentation.

Schematic illustration of PyDaddy functionality.

Installation

PyDaddy is available both on PyPI and Anaconda Cloud, and can be installed on any system with a Python 3 environment. If you don't have Python 3 installed on your system, we recommend using Anaconda or Miniconda. See the PyDaddy package documentation for detailed installation instructions.

Using pip

PyPI PyPI - Wheel PyPI - Status

To install the latest stable release version of PyDaddy, use:

pip install pydaddy

To install the latest development version of PyDaddy, use:

pip install git+https://github.com/tee-lab/PyDaddy.git

Using anaconda

To install using conda, Anaconda or Miniconda need to be installed first. Once this is done, use the following command.

conda install -c tee-lab pydaddy

Documentation

For more information about PyDaddy, check out the package documentation.

Citation

If you are using this package in your research, please cite the repository and the associated paper as follows:

Nabeel, A., Karichannavar, A., Palathingal, S., Jhawar, J., Danny Raj, M., & Guttal, V. (2022). PyDaddy: A Python Package for Discovering SDEs from Time Series Data (Version 0.1.5) [Computer software]. https://github.com/tee-lab/PyDaddy

Nabeel, A., Karichannavar, A., Palathingal, S., Jhawar, J., Danny Raj, M., & Guttal, V. (2022). PyDaddy: A Python package for discovering stochastic dynamical equations from timeseries data. arXiv preprint arXiv:2205.02645.

Licence

PyDaddy is distributed under the GNU General Public License v3.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydaddy-1.0.0.tar.gz (20.2 MB view details)

Uploaded Source

Built Distribution

pydaddy-1.0.0-py3-none-any.whl (20.4 MB view details)

Uploaded Python 3

File details

Details for the file pydaddy-1.0.0.tar.gz.

File metadata

  • Download URL: pydaddy-1.0.0.tar.gz
  • Upload date:
  • Size: 20.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for pydaddy-1.0.0.tar.gz
Algorithm Hash digest
SHA256 e58fb1309fa27e1526bf96c191b05fb5155b07fa6f7e2801a389e880f1b8416b
MD5 fa41906d7048dda7b57ab47c87b6fc16
BLAKE2b-256 af0fbb0dbd9517f4e25bfc41e24f0488dad5f95673999b1d3c69032532052e56

See more details on using hashes here.

File details

Details for the file pydaddy-1.0.0-py3-none-any.whl.

File metadata

  • Download URL: pydaddy-1.0.0-py3-none-any.whl
  • Upload date:
  • Size: 20.4 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.10

File hashes

Hashes for pydaddy-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7da7a45a926d9bd21730296a8fe8684ac33092e62ae8546ce6056a8ea3e848d0
MD5 f96f870829ae16a87fadba3fd8426e5d
BLAKE2b-256 9003b18937a164767189e84ffb3898dba3c4fb910f0b67481160fb2014af4f4c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page