Skip to main content

A Python interface for the Daisi Platform

Project description

Simples steps for using the PyDaisi SDK

Preliminary tasks

Install with PIP:

  • pip install pydaisi

(Optional) Set your personal access token:

Create your personal access token

Set it in the environment:

export DAISI_ACCESS_TOKEN=a1b2c3d4e5f67890abcdef124567890

or in a .env file:

DAISI_ACCESS_TOKEN=a1b2c3d4e5f67890abcdef124567890

Using PyDaisi

Normal calls

You can call the Daisi function, it will run until complete, and the result will be available in the value attribute when it has returned.

from pydaisi import Daisi

# instantiate a Daisi object
daisi = Daisi("my-pebble-tutorial")
# call a Daisi function. You can also use positional parameters: daisi.median("London")
temp = daisi.median(city="London")
print(f"Median temperature in London was: {temp.value}")
print(f"Mean temperature in Amsterdam was: {daisi.mean('Amsterdam')}.value")

Async calls

You can also use Python asyncio functions to create and dispatch many calls asynchronously.

from pydaisi import Daisi
import asyncio

async def callmany():
    calls = []
    # sets up a call, but does not execute
    with Daisi("my-pebble-tutorial") as daisi:
        calls.append(daisi.defer.mean("Paris").fetch_result())
        calls.append(daisi.defer.mean("London").fetch_result())
        calls.append(daisi.defer.mean("Amsterdam").fetch_result())
        await asyncio.gather(calls)

Parallel Execution

You may also use helper functions to execute many calls from your synchronous code

from pydaisi import Daisi

with Daisi('my_daisi_name') as my_daisi:
    calls = []
    calls.append(my_daisi.endpoint1_(**kwargs))
    calls.append(my_daisi.endpoint2_(**kwargs))
    calls.append(my_daisi.endpoint3_(**kwargs))
    print(Daisi.run_parallel(*calls))

Bulk Execution

You can pass a list of arguments all at once, to avoid the overhead of multiple requests to the API:

from pydaisi import Daisi

with Daisi("Add Two Numbers", base_url="https://dev3.daisi.io") as my_daisi:
    dbe = my_daisi._bulk_run(arguments = [{"firstNumber": 5, "secondNumber": x} for x in range(10)])
    print(dbe._bulk_fetch_result())

Execution Status

A Daisi's status can be accessed with the status property:

from pydaisi import Daisi

with Daisi("Add Two Numbers", base_url="https://dev3.daisi.io") as my_daisi:
    de = my_daisi.compute(firstNumber=5, secondNumber=6)
    print(de.status)

Execution Logs

A Daisi's logs can be accessed with the logs property:

from pydaisi import Daisi

with Daisi("Live Logging", base_url="https://dev3.daisi.io") as my_daisi:
    de = my_daisi.live_log_test(firstNumber=5, secondNumber=6, delay=3)
    print(de.logs)

Remote Results

You need not fetch the full data of a Daisi Execution in order to chain it to the computation of another daisi! Consider this example:

from pydaisi import Daisi

# Connect to the Serialization Daisi
d3 = Daisi("Daisi Serialize", base_url="https://dev3.daisi.io")

# Import numpy and define the MapStack class that we will use as an example of custom serialization
import numpy as np

class MapStack:
    def __init__(self, nx, ny):
        self.nx = nx
        self.ny = ny
        self.nb_layers = None
        self.maps = []

    def add_layer(self, map):
        if len(map.shape) == 2 and map.shape[0] == self.ny and map.shape[1] == self.nx:
            self.maps.append(map)
            self.nb_layers = len(self.maps)
            return "Map sucessfully added."
        else:
            return "Could not add map. Incompatible dimensions."

# Initialize a new MapStack object with 10 layers
nx = 200
ny = 200
ms = MapStack(nx, ny)
for i in range(10):
    ms.add_layer(np.random.rand(nx, ny))

# Compute the daisi, adding a new layer
d3_execution = d3.compute(map_stack=ms, map=np.random.rand(nx, ny))
d3_execution.value_id

# Compute the daisi, adding a another new layer
d3_execution2 = d3.compute(map_stack=d3_execution, map=np.random.rand(nx, ny))
d3_execution2.value

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pydaisi-0.3.0rc5-py3-none-any.whl (14.3 kB view details)

Uploaded Python 3

File details

Details for the file pydaisi-0.3.0rc5-py3-none-any.whl.

File metadata

  • Download URL: pydaisi-0.3.0rc5-py3-none-any.whl
  • Upload date:
  • Size: 14.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.10

File hashes

Hashes for pydaisi-0.3.0rc5-py3-none-any.whl
Algorithm Hash digest
SHA256 082ad580254621aac2366229172e8b990ca73d5b2597b02b7826b6ca4ffecc71
MD5 46b2f8be4e9ead2600c0fcc29d8d5d5f
BLAKE2b-256 0eddc019ea47df85281c9387707d3abb2fbc831637fcb18a9c37262075aa0fd2

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page