Skip to main content

No project description provided

Project description

Get support from BLACKTREES or on Github

Pydanql: A Pydantic PostgreSQL Library

⚠️ Early Version Warning: This is an early version of the Pydanql library and is subject to changes. While we strive for stability, features and APIs may be altered as the library evolves. Your feedback is invaluable, so please feel free to provide it through BLACKTREES or on Github.

Introduction

Pydanql offers a streamlined way to interact with PostgreSQL databases using Python. This library combines robust database connection management, data modeling, and CRUD (Create, Read, Update, Delete) functionalities. Additionally, built-in logging features make debugging and error handling more straightforward.

Quick Example

The following example demonstrates how to use the Pydanql library for database interactions. This assumes that the necessary classes—Database, Table, and ObjectBaseModel—are imported from Pydanql.

from pydanql.base import Database
from pydanql.table import Table
# ObjectBaseModel is a Pydantic BaseModel equipped with default fields such as id, slug, date_created, and date_last_edit.
from pydanql.model import ObjectBaseModel

# Define the Book model using Pydantic
class Book(ObjectBaseModel):
    name: str
    author: str
    year: int

# Initialize the database connection
db = Database(database='test_db', user='username', password='password', host='localhost', port=5432)

# Set up a table for books
db.books = Table(db, Book)

# Add a new Book to the database
new_book = Book(name="The Lord of the Rings", author="J. R. R. Tolkien", year=1964)
db.books.add(new_book)

# Retrieve and display Books from the database
books = db.books.find_many()
for book in books:
    print(book)

# Close the database connection
db.close()

Installation

To install the Pydanql library, run the following pip command:

pip install pydanql

Components

  • Database: Manages the connection to a PostgreSQL database.
  • ObjectBaseModel: An enhanced Pydantic model with predefined fields.
  • Table: A utility class for CRUD operations on database tables.
  • DatabaseError: A specialized exception class for database-related issues.

Features & Examples

  • Create a new record:

    new_car = Car(brand="Tesla", model="Model S", year=2020, color="Blue", miles=1000.5)
    db.cars_table.add(new_car)
    
  • Update an existing record:

    existing_car = db.cars_table.find_one(id=1)
    existing_car.color = "Green"
    db.cars_table.replace(existing_car)
    
  • Delete an existing record:

    existing_car = db.cars_table.find_one(id=1)
    db.cars_table.delete(existing_car)
    
  • Find records with queries:

    Pydanql supports multiple types of queries to provide you with powerful search functionality. Below are some examples of how to use different query types.

    • Exact Match:

      blue_cars = db.cars_table.find_many(color='Blue')
      
    • Like Query:

      similar_colors = db.cars_table.find_many(color={'like': 'blu'})
      
    • Range Query:

      recent_cars = db.cars_table.find_many(year={'range': [2015, 2021]})
      
    • In Query:

      cars_by_models = db.cars_table.find_many(model={'in': ['Model S', 'Model X']})
      
    • Greater Than (gt):

      high_mileage_cars = db.cars_table.find_many(miles={'gt': 50000})
      
    • Less Than (lt):

      low_mileage_cars = db.cars_table.find_many(miles={'lt': 30000})
      
    • Sorting, Offset and Count:

      db.cars_table.find_many(sort='-year', offset=10, count=10)
      
    • Single Record:

      newest_car = db.cars_table.find_one(sort='-year')
      

By using these query types, you can execute more complex searches and filters on your records, making Pydanql a versatile tool for interacting with your PostgreSQL database.

  • Count records:

    total_cars = db.cars_table.count()
    
  • Simple pagination:

    page_1_results = db.cars_table.page(page_number=1, page_size=5)
    
  • Model with more complex data types and a custom method:

    class Book(ObjectBaseModel):
        name: str
        author: str
        year: int
        available: bool
        dimensions: Tuple = Field(default=(8,8), data_type="int[]", constraints=["NOT NULL"])
        meta: Dict = Field(default={}, data_type="JSONB", constraints=["NOT NULL"])
    
        def description(self):
            return f"Title: {self.name}, Author: {self.author}, Year: {self.year}"
    
    new_book = Book(name="The Lord of the Rings", author="J. R. R. Tolkien", available=True, year=1964, dimensions=(16,23), meta={ 'language': 'en' })
    db.books.add(new_book)
    
    # Invoke the custom description method
    print(new_book.description())
    

License

Pydanql is licensed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydanql-0.23a0.tar.gz (11.4 kB view details)

Uploaded Source

Built Distribution

pydanql-0.23a0-py3-none-any.whl (10.1 kB view details)

Uploaded Python 3

File details

Details for the file pydanql-0.23a0.tar.gz.

File metadata

  • Download URL: pydanql-0.23a0.tar.gz
  • Upload date:
  • Size: 11.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for pydanql-0.23a0.tar.gz
Algorithm Hash digest
SHA256 d31e652af0dd34a58d47eb4ec62e99a250b50bdadfa1e250413f375765ae7a9a
MD5 c10320d983fce231b598fb713b6d02cb
BLAKE2b-256 7a737f5f95788625a2c27d474001f1273de13f489e64cd66699cb2048c9f7cc2

See more details on using hashes here.

File details

Details for the file pydanql-0.23a0-py3-none-any.whl.

File metadata

  • Download URL: pydanql-0.23a0-py3-none-any.whl
  • Upload date:
  • Size: 10.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for pydanql-0.23a0-py3-none-any.whl
Algorithm Hash digest
SHA256 ef4b067beff80ed4929e87ee336d7060213a176d8db58df524649ec864326508
MD5 3f118341b31f81399ecc070366639f4a
BLAKE2b-256 f12cdbec353f5667c79bec12768b3fd0ae4aad8cc7676f1ba70d1d9ee3ccc38f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page