Skip to main content

Simple HTTP Client based on aiohttp with integration of pydantic

Project description

pydantic_aiohttp - Symbiosis of Pydantic and Aiohttp

PyPI version shields.io PyPI pyversions PyPI license

This repository provides simple HTTP Client based on aiohttp with integration of pydantic

Examples

Basic example

import asyncio

import pydantic

from pydantic_aiohttp import Client
from pydantic_aiohttp.responses import (
    JSONResponseClass,
    PlainTextResponseClass,
    PydanticModelResponseClass
)


class Todo(pydantic.BaseModel):
    userId: int
    id: int
    title: str
    completed: bool


async def main():
    client = Client('https://jsonplaceholder.typicode.com')

    async with client:
        # Text response
        todo = await client.get('/todos/1', response_class=PlainTextResponseClass)
        print(isinstance(todo, str))  # True

        # JSON Response
        todo = await client.get('/todos/1', response_class=JSONResponseClass)
        print(isinstance(todo, dict))  # True
        # You can achieve the same result if you know exact shape of response, dict for example
        todo = await client.get('/todos/1', response_class=PydanticModelResponseClass, response_model=dict)
        print(isinstance(todo, dict))  # True

        # Deserialization in pydantic model
        todo = await client.get('/todos/1', response_class=PydanticModelResponseClass, response_model=Todo)
        print(isinstance(todo, Todo))  # True

        # PydanticModelResponseClass is used by default, so you can omit it
        todo = await client.get('/todos/1', response_model=Todo)
        print(isinstance(todo, Todo))  # True


if __name__ == '__main__':
    asyncio.run(main())

Explicitly close connection

import asyncio

import pydantic

from pydantic_aiohttp import Client

class Todo(pydantic.BaseModel):
    userId: int
    id: int
    title: str
    completed: bool


async def main():
    client = Client('https://jsonplaceholder.typicode.com')

    try:
        await client.get('/todos/1', response_model=Todo)
    finally:
        # Don't forget to close client session after use
        await client.close()


if __name__ == '__main__':
    asyncio.run(main())

Downloading files

import asyncio
import uuid

from pydantic_aiohttp import Client


async def main():
    client = Client('https://source.unsplash.com')

    async with client:
        filepath = await client.download_file("/random", filepath=f"random_{uuid.uuid4()}.jpg")
        print(filepath)


if __name__ == '__main__':
    asyncio.run(main())

Handling errors parsed as pydantic models

import http
import asyncio

import pydantic

import pydantic_aiohttp
from pydantic_aiohttp import Client


class FastAPIValidationError(pydantic.BaseModel):
    loc: list[str]
    msg: str
    type: str


class FastAPIUnprocessableEntityError(pydantic.BaseModel):
    detail: list[FastAPIValidationError]


class User(pydantic.BaseModel):
    id: str
    email: str
    first_name: str
    last_name: str
    is_admin: bool


async def main():
    client = Client(
        "https://fastapi.example.com",
        error_response_models={
            http.HTTPStatus.UNPROCESSABLE_ENTITY: FastAPIUnprocessableEntityError
        }
    )

    try:
        # Imagine, that "email" field is required for this route
        await client.post(
            "/users",
            body={
                "first_name": "John",
                "last_name": "Doe"
            },
            response_model=User
        )
    except pydantic_aiohttp.HTTPUnprocessableEntity as e:
        # response field of exception now contain parsed pydantic model entity 
        print(e.response.detail[0].json(indent=4))
        # >>>
        # {
        #     "loc": [
        #         "body",
        #         "email"
        #     ],
        #     "msg": "field required",
        #     "type": "value_error.missing"
        # }
    finally:
        await client.close()


if __name__ == '__main__':
    asyncio.run(main())

LICENSE

This project is licensed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_aiohttp-0.5.0.tar.gz (9.4 kB view details)

Uploaded Source

Built Distribution

pydantic_aiohttp-0.5.0-py3-none-any.whl (11.0 kB view details)

Uploaded Python 3

File details

Details for the file pydantic_aiohttp-0.5.0.tar.gz.

File metadata

  • Download URL: pydantic_aiohttp-0.5.0.tar.gz
  • Upload date:
  • Size: 9.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.9.13 Linux/5.15.0-1022-azure

File hashes

Hashes for pydantic_aiohttp-0.5.0.tar.gz
Algorithm Hash digest
SHA256 01b40e3f75f1f97c8495a6043f5fdc2a588f712d648cb7c9be9aee54f5afaccc
MD5 1f2d9cbc893b81959c9d693513bac1fb
BLAKE2b-256 8eef585e6237ea1c6f580c010e62e082e78eb5505a1bdb487904e5c64affeb08

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_aiohttp-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: pydantic_aiohttp-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 11.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.2.2 CPython/3.9.13 Linux/5.15.0-1022-azure

File hashes

Hashes for pydantic_aiohttp-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 69c73b366ebcb73d4d6f1233830971bb70d6e6d0672b6c05d47ed354ba23f66e
MD5 96306c894ff41675c54414f2c6a93134
BLAKE2b-256 a55fbed1ddc283fe3cef98a776298bcdab3f559b7f9e98a87bee3d60b695ddfd

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page