Skip to main content

No project description provided

Project description

Pydantic Cache

Cache results of Python functions, with support for serialization of rich data types powered by Pydantic.

Supports caching to disk or Redis by default, but additional caching backends can easily be added.

Examples

Basic usage

You can use any data types which can be serialized by Pydantic, both in the function signature (cache key) and the returned values:

from datetime import datetime, timedelta
from pydantic import BaseModel
from pydantic_cache import disk_cache

class MyModel(BaseModel):
    a: int
    b: datetime
    d: set[datetime]


@disk_cache(path="~/.cache/my-function", ttl=timedelta(days=1))
def my_function(date: datetime) -> list[MyModel]:
    return []  # Some expensive computation

In the above example, subsequent calls to the function with the same argument will fetch the results from the cache on disk. Serialization and deserialization are handled based on the function's type annotations.

Redis support

The library includes support for caching results to/from redis. This depends on redis, which can be installed via pip install pydantic-cache[redis].

from datetime import timedelta
from pydantic_cache import cache
from pydantic_cache.backend import RedisBackend
from redis import Redis

redis = Redis(...)

@cache(RedisBackend(redis, ttl=timedelta(days=1)))
def my_function() -> dict:
    return {}

Custom cache backends

You can implement custom cache backends by sub-classing Backend:

from pydantic_cache import Backend, cache


class MemoryBackend(Backend):
    def __init__(self) -> None:
        # Optional initial set-up of the backend.
        self._cache: dict[str, str] = {}

    def get(self, key: str) -> str:
        # Implement cache retrieval here.
        # Cache misses should raise a KeyError.
        return self._cache[key]

    def write(self, key: str, value: str) -> None:
        # Write to the cache here.
        self._cache[key] = value


@cache(backend=MemoryBackend)
def my_function() -> dict:
    return {}

[!NOTE] Cache backends only interact with serialized data, so the str types above will apply for all backends.

Deferred backend resolution

Some backends may rely on reading configurations or creating connections to external services, which is best avoided at import time. To support this, the cache decorator optionally accepts a callable which returns the backend, instead of the backend itself.

from datetime import timedelta
from pathlib import Path
from pydantic_cache import DiskBackend, cache
from pydantic_settings import BaseSettings

class Settings(BaseSettings):
    cache_ttl: timedelta
    cache_path: Path


def get_cache_backend() -> DiskBackend:
    settings = Settings()
    return DiskBackend(settings.cache_path, ttl=settings.cache_ttl)


@cache(backend=get_cache_backend)
def my_function() -> dict:
    return {}

asyncio support

Asynchronous functions are supported by default, however using a synchronous backend will naturally result in blocking calls:

import asyncio
from pydantic_cache import DiskBackend, cache

@cache(backend=DiskBackend(...))
async def my_function() -> dict:
    return await asyncio.sleep(0, {})

To avoid blocking IO calls in the cache backend, you can implement an asynchronous backend as a subclass of AsyncBackend. See the following example using aioredis:

import asyncio
import aioredis
from pydantic_cache import AsyncBackend, cache


class AioRedisBackend(AsyncBackend):
    def __init__(self, redis: aioredis.Client) -> None:
        self.redis = redis

    async def get(self, key: str) -> str:
        result = await self.redis.get(key)
        if result is None:
            raise KeyError(key)
        return result

    async def write(self, key: str, value: str) -> None:
        await self.redis.set(key, value)


@cache(backend=AioRedisBackend(...))
async def my_function() -> dict:
    return await asyncio.sleep(0, {})

Installation

This project is not currently packaged and so must be installed manually.

Clone the project with the following command:

git clone https://github.com/jacksmith15/pydantic-cache.git

Development

Install dependencies:

pyenv shell 3.10.x
pre-commit install  # Configure commit hooks
poetry install  # Install Python dependencies

Run tests:

poetry run inv verify

License

This project is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_cache-0.1.0.tar.gz (5.4 kB view hashes)

Uploaded Source

Built Distribution

pydantic_cache-0.1.0-py3-none-any.whl (6.8 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page