Skip to main content

Pydantic model support for Django ORM

Project description

Pydantic-Django

An attempt to implement a Pydantic model interface for Django ORM. The goal of this project is to support all of Pydantic's features to provide as many (useful) conveniences for Django models as possible.

Important: this project should be considered an experimental work-in-progress. The current API design and behaviour is not finalised, specific version support is not yet determined, and there is still a lot of things to test yet.

Also, I typically haven't used metaclasses/classes like this previously, so there may be some details in the implementation to refine.

Seems to work okay so far. :)

Installation

pip install pydantic-django

Usage

Requirements: Python 3.7+, Django 3

An example of basic serialization case:

from users.models import User
from pydantic_django import PydanticDjangoModel

class PydanticUser(PydanticDjangoModel):
    """An example user schema."""

    class Config:
        model = User

schema = PydanticUser.schema()

A schema call would return something like this:

{
    'description': 'An example user schema.',
    'properties': {
        'created_at': {'format': 'date-time', 'title': 'Created At', 'type': 'string'},
        'email': {'maxLength': 254, 'title': 'Email', 'type': 'string'},
        'first_name': {'maxLength': 50, 'title': 'First Name', 'type': 'string'},
        'groups': {'items': {'type': 'integer'}, 'title': 'Id', 'type': 'array'},
        'id': {'title': 'Id', 'type': 'integer'},
        'last_name': {'maxLength': 50, 'title': 'Last Name', 'type': 'string'},
        'messages': {'items': {'type': 'integer'}, 'title': 'Id', 'type': 'array'},
        'profile': {'title': 'Id', 'type': 'integer'},
        'updated_at': {'format': 'date-time', 'title': 'Updated At', 'type': 'string'},
    },
    'required': ['first_name', 'email', 'created_at', 'updated_at', 'groups'],
    'title': 'PydanticUser',
    'type': 'object',
}

There are a few ways to populate the models with values, the first is using the from_django method:

user = User.objects.create(
    first_name="Jordan", last_name="Eremieff", email="jordan@eremieff.com"
)

pydantic_user = PydanticUser.from_django(user)

Alternatively, the Pydantic model can be used to create a new object:

pydantic_user = PydanticUser.create(first_name="Jordan", last_name="Eremieff", email="jordan@eremieff.com")

Or retrieve an existing one:

pydantic_user = PydanticUser.get(id=user.id)

The object in each case can be validated and export the values in the same way:

user_json = pydantic_user.json()

To produce a result such as:

{"profile": null, "messages": [], "id": 1, "first_name": "Jordan", "last_name": "Eremieff", "email": "jordan@eremieff.com", "created_at": "2020-08-09T13:45:04.395787+00:00",
"updated_at": "2020-08-09T13:45:04.395828+00:00", "groups": []}

It can do a bit more than this, but you'll have to check out the testing application and test cases as a reference for now.

Roadmap

  • Automatic schema generation from Django models
  • Basic queryset interface for CRUD operations
  • Include & exclude field filtering
  • Default factory support
  • Support basic field types
  • Sub-model support for forward and reverse relations
  • Postgres field types
  • Support for multi-object querysets
  • More comprehensive support for Django features
  • HTML schema generation
  • Create a complete application example
  • Look into performance & benchmarking
  • More test coverage & type annotations

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic-django-0.0.1.tar.gz (12.0 kB view details)

Uploaded Source

File details

Details for the file pydantic-django-0.0.1.tar.gz.

File metadata

  • Download URL: pydantic-django-0.0.1.tar.gz
  • Upload date:
  • Size: 12.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/39.0.1 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.1

File hashes

Hashes for pydantic-django-0.0.1.tar.gz
Algorithm Hash digest
SHA256 76eb63ba85b44dc1bbb18c84a9392fbad4ecccefe00478c55a00c4ea8c5e901c
MD5 71978ac9b63cc394245e34fbe02ba252
BLAKE2b-256 24810314fafc66375a897f89f3217fca2f36f5b33345a90afeebe0c97ba2fa7e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page