Pydantic validation for GeoJson
Project description
pydantic-geojson 🌍
GeoJSON Objects | Status |
---|---|
Point | ✅ |
MultiPoint | ✅ |
LineString | ✅ |
MultiLineString | ✅ |
Polygon | ✅ |
MultiPolygon | ✅ |
GeometryCollection | ✅ |
Feature | ✅ |
FeatureCollection | ✅ |
Installation
pydantic-geojson is compatible with Python 3.7 and up. The recommended way to install is via poetry:
poetry add pydantic_geojson
Using pip to install is also possible.
pip install pydantic_geojson
GEOJSON
GeoJSON is a format for encoding a variety of geographic data structures.
{
"type": "Feature",
"geometry": {
"type": "Point",
"coordinates": [125.6, 10.1]
},
"properties": {
"name": "Dinagat Islands"
}
}
GeoJSON supports the following geometry types: Point, LineString, Polygon, MultiPoint, MultiLineString, and MultiPolygon. Geometric objects with additional properties are Feature objects. Sets of features are contained by FeatureCollection objects.
Examples of using
Custom properties:
from pydantic import BaseModel
from pydantic_geojson import FeatureModel
class MyPropertiesModel(BaseModel):
name: str
class MyFeatureModel(FeatureModel):
properties: MyPropertiesModel
data = {
"type": "Feature",
"properties": {
"name": "foo name",
},
"geometry": {
"type": "Polygon",
"coordinates": [
[
[-80.724878, 35.265454],
[-80.722646, 35.260338]
]
]
}
}
>>> MyFeatureModel(**data)
>>> type='Feature' geometry=PolygonModel(type='Polygon', coordinates=[[Coordinates(lon=-80.724878, lat=35.265454), Coordinates(lon=-80.722646, lat=35.260338)]]) properties=MyPropertiesModel(name='foo name')
Point
Simple example data:
from pydantic_geojson import PointModel
data = {
"type": "Point",
"coordinates": [-105.01621, 39.57422]
}
>>> PointModel(**data)
>>> type='Point' coordinates=Coordinates(lon=-105.01621, lat=39.57422)
MultiPoint
Simple example data:
from pydantic_geojson import MultiPointModel
data = {
"type": "MultiPoint",
"coordinates": [
[-105.01621, 39.57422],
[-80.666513, 35.053994]
]
}
>>> PointModel(**data)
>>> type='MultiPoint' coordinates=[Coordinates(lon=-105.01621, lat=39.57422), Coordinates(lon=-80.666513, lat=35.053994)]
LineString
Simple example data:
from pydantic_geojson import LineStringModel
data = {
"type": "LineString",
"coordinates": [
[-99.113159, 38.869651],
[-99.0802, 38.85682],
[-98.822021, 38.85682],
[-98.448486, 38.848264]
]
}
>>> LineStringModel(**data)
>>> type='LineString' coordinates=[Coordinates(lon=-99.113159, lat=38.869651), Coordinates(lon=-99.0802, lat=38.85682), Coordinates(lon=-98.822021, lat=38.85682), Coordinates(lon=-98.448486, lat=38.848264)]
MultiLineString
Simple example data:
from pydantic_geojson import MultiLineStringModel
data = {
"type": "MultiLineString",
"coordinates": [
[
[-105.019898, 39.574997],
[-105.019598, 39.574898],
[-105.019061, 39.574782]
],
[
[-105.017173, 39.574402],
[-105.01698, 39.574385],
[-105.016636, 39.574385],
[-105.016508, 39.574402],
[-105.01595, 39.57427]
],
[
[-105.014276, 39.573972],
[-105.014126, 39.574038],
[-105.013825, 39.57417],
[-105.01331, 39.574452]
]
]
}
>>> MultiLineStringModel(**data)
>>> type='MultiLineString' coordinates=[[Coordinates(lon=-105.019898, lat=39.574997), Coordinates(lon=-105.019598, lat=39.574898), Coordinates(lon=-105.019061, lat=39.574782)], [Coordinates(lon=-105.017173, lat=39.574402), Coordinates(lon=-105.01698, lat=39.574385), Coordinates(lon=-105.016636, lat=39.574385), Coordinates(lon=-105.016508, lat=39.574402), Coordinates(lon=-105.01595, lat=39.57427)], [Coordinates(lon=-105.014276, lat=39.573972), Coordinates(lon=-105.014126, lat=39.574038), Coordinates(lon=-105.013825, lat=39.57417), Coordinates(lon=-105.01331, lat=39.574452)]]
Polygon
Simple example data:
from pydantic_geojson import PolygonModel
data = {
"type": "Polygon",
"coordinates": [
[
[100, 0],
[101, 0],
[101, 1],
[100, 1],
[100, 0]
]
]
}
>>> PolygonModel(**data)
>>> type='Polygon' coordinates=[[Coordinates(lon=100.0, lat=0.0), Coordinates(lon=101.0, lat=0.0), Coordinates(lon=101.0, lat=1.0), Coordinates(lon=100.0, lat=1.0), Coordinates(lon=100.0, lat=0.0)]]
MultiPolygon
Simple example data:
from pydantic_geojson import MultiPolygonModel
data = {
"type": "MultiPolygon",
"coordinates": [
[
[
[107, 7],
[108, 7],
[108, 8],
[107, 8],
[107, 7]
]
],
[
[
[100, 0],
[101, 0],
[101, 1],
[100, 1],
[100, 0]
]
]
]
}
>>> MultiPolygonModel(**data)
>>> type='MultiPolygon' coordinates=[[[Coordinates(lon=107.0, lat=7.0), Coordinates(lon=108.0, lat=7.0), Coordinates(lon=108.0, lat=8.0), Coordinates(lon=107.0, lat=8.0), Coordinates(lon=107.0, lat=7.0)]], [[Coordinates(lon=100.0, lat=0.0), Coordinates(lon=101.0, lat=0.0), Coordinates(lon=101.0, lat=1.0), Coordinates(lon=100.0, lat=1.0), Coordinates(lon=100.0, lat=0.0)]]]
GeometryCollection
Simple example data:
from pydantic_geojson import GeometryCollectionModel
data = {
"type": "GeometryCollection",
"geometries": [
{
"type": "Point",
"coordinates": [-80.660805, 35.049392]
},
{
"type": "Polygon",
"coordinates": [
[
[-80.664582, 35.044965],
[-80.663874, 35.04428],
[-80.662586, 35.04558],
[-80.663444, 35.046036],
[-80.664582, 35.044965]
]
]
},
{
"type": "LineString",
"coordinates": [
[-80.662372, 35.059509],
[-80.662693, 35.059263],
[-80.662844, 35.05893]
]
}
]
}
>>> GeometryCollectionModel(**data)
>>> type='GeometryCollection' geometries=[PointModel(type='Point', coordinates=Coordinates(lon=-80.660805, lat=35.049392)), PolygonModel(type='Polygon', coordinates=[[Coordinates(lon=-80.664582, lat=35.044965), Coordinates(lon=-80.663874, lat=35.04428), Coordinates(lon=-80.662586, lat=35.04558), Coordinates(lon=-80.663444, lat=35.046036), Coordinates(lon=-80.664582, lat=35.044965)]]), LineStringModel(type='LineString', coordinates=[Coordinates(lon=-80.662372, lat=35.059509), Coordinates(lon=-80.662693, lat=35.059263), Coordinates(lon=-80.662844, lat=35.05893)])]
Feature
Simple example data:
from pydantic_geojson import FeatureModel
data = {
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [
[
[-80.724878, 35.265454],
[-80.722646, 35.260338],
[-80.720329, 35.260618],
[-80.71681, 35.255361],
[-80.704793, 35.268397],
[-82.715179, 35.267696],
[-80.721359, 35.267276],
[-80.724878, 35.265454]
]
]
}
}
>>> FeatureModel(**data)
>>> type='Feature' geometry=PolygonModel(type='Polygon', coordinates=[[Coordinates(lon=-80.724878, lat=35.265454), Coordinates(lon=-80.722646, lat=35.260338), Coordinates(lon=-80.720329, lat=35.260618), Coordinates(lon=-80.71681, lat=35.255361), Coordinates(lon=-80.704793, lat=35.268397), Coordinates(lon=-82.715179, lat=35.267696), Coordinates(lon=-80.721359, lat=35.267276), Coordinates(lon=-80.724878, lat=35.265454)]])
FeatureCollection
Simple example data:
from pydantic_geojson import FeatureCollectionModel
data = {
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"geometry": {
"type": "Point",
"coordinates": [-80.870885, 35.215151]
}
},
{
"type": "Feature",
"geometry": {
"type": "Polygon",
"coordinates": [
[
[-80.724878, 35.265454],
[-80.722646, 35.260338],
[-80.720329, 35.260618],
[-80.704793, 35.268397],
[-80.724878, 35.265454]
]
]
}
}
]
}
>>> FeatureCollectionModel(**data)
>>> type='FeatureCollection' features=[FeatureModel(type='Feature', geometry=PointModel(type='Point', coordinates=Coordinates(lon=-80.870885, lat=35.215151))), FeatureModel(type='Feature', geometry=PolygonModel(type='Polygon', coordinates=[[Coordinates(lon=-80.724878, lat=35.265454), Coordinates(lon=-80.722646, lat=35.260338), Coordinates(lon=-80.720329, lat=35.260618), Coordinates(lon=-80.704793, lat=35.268397), Coordinates(lon=-80.724878, lat=35.265454)]]))]
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pydantic_geojson-0.1.1.tar.gz
.
File metadata
- Download URL: pydantic_geojson-0.1.1.tar.gz
- Upload date:
- Size: 7.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.5.1 CPython/3.10.0 Darwin/21.6.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bcb5d6a0ef553d754e7883af2fa2d233bf97a84a1e7b9393ceaa3acabeccd402 |
|
MD5 | da0ef9be89563de9ac45b2724a14b416 |
|
BLAKE2b-256 | 79f7be6bd14a8fbf22e25a15af2ec0b1f1bb5fdec87a402133962b82713a8be8 |
File details
Details for the file pydantic_geojson-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: pydantic_geojson-0.1.1-py3-none-any.whl
- Upload date:
- Size: 9.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.5.1 CPython/3.10.0 Darwin/21.6.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b9ee9455818c413f664a8cf6e8bf0d75154a429fc6a641e24998de62337933aa |
|
MD5 | 36b6df292854ee4100eaaa7983e3439e |
|
BLAKE2b-256 | 846ea4b7afff9f4da18632490b6873e88c17ace97bb2f39c9ff127927ccced9c |