Skip to main content

This code simplifies the conversion of Pydantic schemas into Aiogram handler groups, making it easy to create form-filling handlers.

Project description

Pydantic-handler-converter

This code simplifies the conversion of Pydantic schemas into Aiogram handler groups, making it easy to create form-filling handlers.

Installation

    pip install pydantic_handler_converter

Usage:

>>> from enum import Enum
>>> from typing import Union
>>> from pydantic import BaseModel
>>> from pydantic_handler_converter import BasePydanticFormHandlers

# ----------------------------------------Simple datatypes schema--------------------------------------

>>> class PersonPydanticFormSchema(BaseModel):
...     name: str
...     age: int
...     height: float 
... 

>>> class PersonFormHanlders(BasePydanticFormHandlers[PersonPydanticFormSchema]):
...     pass
...
...
>>> dirs = dir(PersonFormHanlders)
>>> assert len(tuple(filter(lambda x: not x in dirs, ['name_view', 'age_view', 'height_view']))) == 0
>>> assert PersonFormHanlders(finish_call=None)

# ----------------------------------------Enum datatype schema-----------------------------------------

>>> class Mood(Enum):
...     HAPPY = "😄 Happy"
...     SAD = "😢 Sad"
...     EXCITED = "🤩 Excited"
...     RELAXED = "😌 Relaxed"
...
>>>
>>>
>>> class PersonMoodPydanticFormSchema(BaseModel):
...     name: str
...     current_mood: Mood
...
>>> class PersonMoodFormHanlders(BasePydanticFormHandlers[PersonMoodPydanticFormSchema]): 
...     pass
...
...
>>> dirs = dir(PersonMoodFormHanlders)
>>> assert len(tuple(filter(lambda x: not x in dirs, ['name_view', 'current_mood_view']))) == 0
>>> assert PersonMoodFormHanlders(finish_call=None)

# ----------------------------------------Complex schema-----------------------------------------------

>>> class Address(BaseModel):
...     street: str
...     city: str
...     postal_code: str
...
>>> class Person(BaseModel):
...      name: str
...      age: int
...      address: Address
...
...
>>> class PersonFormHanlders(BasePydanticFormHandlers[Person]): 
...     pass
...
...
>>> dirs = dir(PersonFormHanlders)
>>> assert len(tuple(filter(lambda x: not x in dirs, 
...     ['name_view', 'address_street_view', 'address_city_view', 'address_postal_code_view']
... ))) == 0
...
>>> assert PersonFormHanlders(finish_call=None)

# ------------------------------------Combined Enum datatype schema------------------------------------

>>> class HappyMood(Enum):
...     HAPPY = "😄 Happy"
...
>>> class SadMood(Enum):
...     SAD = "😢 Sad"
...
>>> class ExcitedMood(Enum):
...     EXCITED = "🤩 Excited"
...
>>> class RelaxedMood(Enum):
...     RELAXED = "😌 Relaxed"
...
>>>
>>> class PersonMoodPydanticFormSchema(BaseModel):
...     name: str
...     current_mood: Union[HappyMood, SadMood, ExcitedMood, RelaxedMood]
...     future_mood: HappyMood | SadMood | ExcitedMood | RelaxedMood
...
...
>>> class PersonMoodFormHanlders(BasePydanticFormHandlers[PersonMoodPydanticFormSchema]): 
...     pass
...
...
>>> dirs = dir(PersonMoodFormHanlders)
>>> assert len(tuple(filter(lambda x: not x in dirs, ['name_view', 'current_mood_view']))) == 0
>>> assert PersonMoodFormHanlders(finish_call=None)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_handler_converter-0.1.107.tar.gz (14.3 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file pydantic_handler_converter-0.1.107.tar.gz.

File metadata

File hashes

Hashes for pydantic_handler_converter-0.1.107.tar.gz
Algorithm Hash digest
SHA256 c222feaf6f80a31bdc03733b6485cd0df284e37024bc3779d5dd5b47536d8f2e
MD5 47453b00f725c4501676b131a32c1533
BLAKE2b-256 43f6c3911b3580d51624988a1ad288806ed91f93bb0f70fe428d8bee1631df43

See more details on using hashes here.

File details

Details for the file pydantic_handler_converter-0.1.107-py3-none-any.whl.

File metadata

File hashes

Hashes for pydantic_handler_converter-0.1.107-py3-none-any.whl
Algorithm Hash digest
SHA256 17c2e52b5e87223c378715b61c284e5d8697539c424bda958a5f8691b6aca455
MD5 3abde3824eaffaa3b2a1cfe8a719decf
BLAKE2b-256 fb7f84cae36fe0c6928d7fdbbe49e5bcf20d20479ee6b5464aef86a352128d1b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page