Skip to main content

This code simplifies the conversion of Pydantic schemas into Aiogram handler groups, making it easy to create form-filling handlers.

Project description

Pydantic-handler-converter

This code simplifies the conversion of Pydantic schemas into Aiogram handler groups, making it easy to create form-filling handlers.

Installation

    pip install pydantic_handler_converter

Usage:

>>> from enum import Enum
>>> from typing import Union
>>> from pydantic import BaseModel
>>> from pydantic_handler_converter import BasePydanticFormHandlers

# ----------------------------------------Simple datatypes schema--------------------------------------

>>> class PersonPydanticFormSchema(BaseModel):
...     name: str
...     age: int
...     height: float 
... 

>>> class PersonFormHanlders(BasePydanticFormHandlers[PersonPydanticFormSchema]):
...     pass
...
...
>>> dirs = dir(PersonFormHanlders)
>>> assert len(tuple(filter(lambda x: not x in dirs, ['name_view', 'age_view', 'height_view']))) == 0
>>> assert PersonFormHanlders(finish_call=None)

# ----------------------------------------Enum datatype schema-----------------------------------------

>>> class Mood(Enum):
...     HAPPY = "😄 Happy"
...     SAD = "😢 Sad"
...     EXCITED = "🤩 Excited"
...     RELAXED = "😌 Relaxed"
...
>>>
>>>
>>> class PersonMoodPydanticFormSchema(BaseModel):
...     name: str
...     current_mood: Mood
...
>>> class PersonMoodFormHanlders(BasePydanticFormHandlers[PersonMoodPydanticFormSchema]): 
...     pass
...
...
>>> dirs = dir(PersonMoodFormHanlders)
>>> assert len(tuple(filter(lambda x: not x in dirs, ['name_view', 'current_mood_view']))) == 0
>>> assert PersonMoodFormHanlders(finish_call=None)

# ----------------------------------------Complex schema-----------------------------------------------

>>> class Address(BaseModel):
...     street: str
...     city: str
...     postal_code: str
...
>>> class Person(BaseModel):
...      name: str
...      age: int
...      address: Address
...
...
>>> class PersonFormHanlders(BasePydanticFormHandlers[Person]): 
...     pass
...
...
>>> dirs = dir(PersonFormHanlders)
>>> assert len(tuple(filter(lambda x: not x in dirs, 
...     ['name_view', 'address_street_view', 'address_city_view', 'address_postal_code_view']
... ))) == 0
...
>>> assert PersonFormHanlders(finish_call=None)

# ------------------------------------Combined Enum datatype schema------------------------------------

>>> class HappyMood(Enum):
...     HAPPY = "😄 Happy"
...
>>> class SadMood(Enum):
...     SAD = "😢 Sad"
...
>>> class ExcitedMood(Enum):
...     EXCITED = "🤩 Excited"
...
>>> class RelaxedMood(Enum):
...     RELAXED = "😌 Relaxed"
...
>>>
>>> class PersonMoodPydanticFormSchema(BaseModel):
...     name: str
...     current_mood: Union[HappyMood, SadMood, ExcitedMood, RelaxedMood]
...     future_mood: HappyMood | SadMood | ExcitedMood | RelaxedMood
...
...
>>> class PersonMoodFormHanlders(BasePydanticFormHandlers[PersonMoodPydanticFormSchema]): 
...     pass
...
...
>>> dirs = dir(PersonMoodFormHanlders)
>>> assert len(tuple(filter(lambda x: not x in dirs, ['name_view', 'current_mood_view']))) == 0
>>> assert PersonMoodFormHanlders(finish_call=None)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_handler_converter-0.1.110.tar.gz (14.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file pydantic_handler_converter-0.1.110.tar.gz.

File metadata

File hashes

Hashes for pydantic_handler_converter-0.1.110.tar.gz
Algorithm Hash digest
SHA256 b1b3cfb3b47a4c8472df764d5f1a41d88e34e893d7fd79d6177620afe62499f3
MD5 35f83a68a2ef2fb656b2efddcf23db19
BLAKE2b-256 a08a5553d345dd130f45927088d189a463748b1df03f847392d3e20dcebe1201

See more details on using hashes here.

File details

Details for the file pydantic_handler_converter-0.1.110-py3-none-any.whl.

File metadata

File hashes

Hashes for pydantic_handler_converter-0.1.110-py3-none-any.whl
Algorithm Hash digest
SHA256 da924bc84c0010fc18318337e149acc9b8122d121be8b3edba71670607274e1e
MD5 6a64fb39d01fb1c02749c242f56d01d9
BLAKE2b-256 57f964fa6419dce18563342d4cae83fcce3299beba57621c9f15d40223b6da96

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page