Skip to main content

This code simplifies the conversion of Pydantic schemas into Aiogram handler groups, making it easy to create form-filling handlers.

Project description

Pydantic-handler-converter

This code simplifies the conversion of Pydantic schemas into Aiogram handler groups, making it easy to create form-filling handlers.

Installation

    pip install pydantic_handler_converter

Usage:

>>> from enum import Enum
>>> from typing import Union
>>> from pydantic import BaseModel
>>> from pydantic_handler_converter import BasePydanticFormHandlers

# ----------------------------------------Simple datatypes schema--------------------------------------

>>> class PersonPydanticFormSchema(BaseModel):
...     name: str
...     age: int
...     height: float 
... 

>>> class PersonFormHanlders(BasePydanticFormHandlers[PersonPydanticFormSchema]):
...     pass
...
...
>>> dirs = dir(PersonFormHanlders)
>>> assert len(tuple(filter(lambda x: not x in dirs, ['name_view', 'age_view', 'height_view']))) == 0
>>> assert PersonFormHanlders(finish_call=None)

# ----------------------------------------Enum datatype schema-----------------------------------------

>>> class Mood(Enum):
...     HAPPY = "😄 Happy"
...     SAD = "😢 Sad"
...     EXCITED = "🤩 Excited"
...     RELAXED = "😌 Relaxed"
...
>>>
>>>
>>> class PersonMoodPydanticFormSchema(BaseModel):
...     name: str
...     current_mood: Mood
...
>>> class PersonMoodFormHanlders(BasePydanticFormHandlers[PersonMoodPydanticFormSchema]): 
...     pass
...
...
>>> dirs = dir(PersonMoodFormHanlders)
>>> assert len(tuple(filter(lambda x: not x in dirs, ['name_view', 'current_mood_view']))) == 0
>>> assert PersonMoodFormHanlders(finish_call=None)

# ----------------------------------------Complex schema-----------------------------------------------

>>> class Address(BaseModel):
...     street: str
...     city: str
...     postal_code: str
...
>>> class Person(BaseModel):
...      name: str
...      age: int
...      address: Address
...
...
>>> class PersonFormHanlders(BasePydanticFormHandlers[Person]): 
...     pass
...
...
>>> dirs = dir(PersonFormHanlders)
>>> assert len(tuple(filter(lambda x: not x in dirs, 
...     ['name_view', 'address_street_view', 'address_city_view', 'address_postal_code_view']
... ))) == 0
...
>>> assert PersonFormHanlders(finish_call=None)

# ------------------------------------Combined Enum datatype schema------------------------------------

>>> class HappyMood(Enum):
...     HAPPY = "😄 Happy"
...
>>> class SadMood(Enum):
...     SAD = "😢 Sad"
...
>>> class ExcitedMood(Enum):
...     EXCITED = "🤩 Excited"
...
>>> class RelaxedMood(Enum):
...     RELAXED = "😌 Relaxed"
...
>>>
>>> class PersonMoodPydanticFormSchema(BaseModel):
...     name: str
...     current_mood: Union[HappyMood, SadMood, ExcitedMood, RelaxedMood]
...     future_mood: HappyMood | SadMood | ExcitedMood | RelaxedMood
...
...
>>> class PersonMoodFormHanlders(BasePydanticFormHandlers[PersonMoodPydanticFormSchema]): 
...     pass
...
...
>>> dirs = dir(PersonMoodFormHanlders)
>>> assert len(tuple(filter(lambda x: not x in dirs, ['name_view', 'current_mood_view']))) == 0
>>> assert PersonMoodFormHanlders(finish_call=None)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_handler_converter-0.1.35.tar.gz (10.5 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file pydantic_handler_converter-0.1.35.tar.gz.

File metadata

  • Download URL: pydantic_handler_converter-0.1.35.tar.gz
  • Upload date:
  • Size: 10.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.10.6 Linux/5.15.0-1047-azure

File hashes

Hashes for pydantic_handler_converter-0.1.35.tar.gz
Algorithm Hash digest
SHA256 e5def6517f3b9b270e4e65b257292567823a29411b888191508460d70a9564a5
MD5 13ed0fc73e267200e7c0b41d1321b8ff
BLAKE2b-256 8ad658fba19df7d36d5ae0c14dac2bb54fab3cacb6eb348759159a6a17ce2d7e

See more details on using hashes here.

File details

Details for the file pydantic_handler_converter-0.1.35-py3-none-any.whl.

File metadata

File hashes

Hashes for pydantic_handler_converter-0.1.35-py3-none-any.whl
Algorithm Hash digest
SHA256 5e2691603c28467330cee905c2a72b5ad13b043eeb7bb364e620a41866f6cbb9
MD5 94146fc0d81c48bae94f725224d832b5
BLAKE2b-256 421c409ae3fc8ee22d33514d7bce1e97f6e6e6e1d9bf53e6e20483e50bf4452e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page