Skip to main content

Library for creating partial pydantic models (automatic converters) from different mappings

Project description

Pydantic Marshals

Library for creating partial pydantic models (automatic converters) from different mappings. Currently, it consists of basic boilerplate parts and functional implementation for sqlalchemy 2.0+ (included via extra)

Base Interface

TBA

Implementations

TBA

SQLAlchemy: Basic usage

# sqlalchemy 2.0+ is required
from sqlalchemy import ForeignKey, String, Text
from sqlalchemy.orm import Mapped, mapped_column, relationship

from pydantic_marshals.sqlalchemy import MappedModel

class Avatar(Base):
    __tablename__ = "avatars"
    id: Mapped[int] = mapped_column(primary_key=True)
    IdModel = MappedModel.create(columns=[id])

class User(Base):
    __tablename__ = "users"
    id: Mapped[int] = mapped_column(primary_key=True)
    name: Mapped[str] = mapped_column(String(100))
    description: Mapped[str | None] = mapped_column(Text())

    avatar_id: Mapped[int] = mapped_column(ForeignKey("avatars.id"))
    avatar: Mapped[Avatar] = relationship()
    
    @property
    def representation(self) -> str:
        return f"User #{self.id}: {self.name}"
    
    BaseModel = MappedModel.create(columns=[id])
    CreateModel = MappedModel.create(columns=[name, description])
    IndexModel = MappedModel.create(properties=[representation])
    FullModel = BaseModel.extend(
        relationships=[(avatar, Avatar.IdModel)], 
        includes=[CreateModel, IndexModel],
    )


with sessionmaker.begin() as session:
    user = User(name="alex", description="cool person", avatar=Avatar())
    session.add(user)
    session.flush()

    print(User.BaseModel.model_validate(user).model_dump())  
    # {"id": 0}
    print(User.CreateModel.model_validate(user).model_dump())  
    # {"name": "alex", "description": "cool person"}
    print(User.IndexModel.model_validate(user).model_dump())  
    # {"representation": "User #0: alex"}
    print(User.FullModel.model_validate(user).model_dump())  
    # {
    #   "id": 0, 
    #   "name": "alex", 
    #   "description": "cool person", 
    #   "representation": "User #0: alex", 
    #   "avatar": {"id": 0}
    # }

Assert Contains

The "assert contains" is an interface for validating data, mainly used in testing. Use "assert-contains" extra to install this module:

pip install pydantic-marshals[assert-contains]

Documentation:

Local development

  1. Clone the repository
  2. Setup python (the library is made with python 3.10+)
  3. Install poetry (should work with v1.4.1)
  4. Install dependencies
  5. Install pre-commit hooks

Commands to use:

pip install poetry==1.4.1
poetry install
pre-commit install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_marshals-0.3.0.tar.gz (10.7 kB view details)

Uploaded Source

Built Distribution

pydantic_marshals-0.3.0-py3-none-any.whl (19.5 kB view details)

Uploaded Python 3

File details

Details for the file pydantic_marshals-0.3.0.tar.gz.

File metadata

  • Download URL: pydantic_marshals-0.3.0.tar.gz
  • Upload date:
  • Size: 10.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.1 CPython/3.11.1 Windows/10

File hashes

Hashes for pydantic_marshals-0.3.0.tar.gz
Algorithm Hash digest
SHA256 e9963bfb1994cfc10f3a2ce957b835f937556e584348e4f98599e4a30589e8a5
MD5 d6221b21ff328c3d2721de8ed282f15a
BLAKE2b-256 0e253587903bf80889bfebcec5eed51e1e0cd706c2de98e1aa0399ab83579472

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_marshals-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for pydantic_marshals-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 12958c9337aa2094f668cf0ce46732f0d224e27733ca41c32f5461264128b262
MD5 c9c15afaf089caf06c857a9f74555651
BLAKE2b-256 a174258e86f1fb4851ceab99940c29eeff96fb25500851fab064219e1b1b8f1b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page