Skip to main content

Library for creating partial pydantic models (automatic converters) from different mappings

Project description

Pydantic Marshals

Library for creating partial pydantic models (automatic converters) from different mappings. Currently, it consists of basic boilerplate parts and functional implementation for sqlalchemy 2.0+ (included via extra)

Base Interface

TBA

Implementations

TBA

SQLAlchemy: Basic usage

# sqlalchemy 2.0+ is required
from sqlalchemy import ForeignKey, String, Text
from sqlalchemy.orm import Mapped, mapped_column, relationship

from pydantic_marshals.sqlalchemy import MappedModel

class Avatar(Base):
    __tablename__ = "avatars"
    id: Mapped[int] = mapped_column(primary_key=True)
    IdModel = MappedModel.create(columns=[id])

class User(Base):
    __tablename__ = "users"
    id: Mapped[int] = mapped_column(primary_key=True)
    name: Mapped[str] = mapped_column(String(100))
    description: Mapped[str | None] = mapped_column(Text())
    admin: Mapped[bool] = mapped_column()  # empty `mapped_column()` is required for models

    avatar_id: Mapped[int] = mapped_column(ForeignKey("avatars.id"))
    avatar: Mapped[Avatar] = relationship()

    @property
    def representation(self) -> str:
        return f"User #{self.id}: {self.name}"

    BaseModel = MappedModel.create(columns=[id])
    CreateModel = MappedModel.create(columns=[name, description])
    PatchModel = CreateModel.as_patch()
    IndexModel = MappedModel.create(properties=[representation])
    FullModel = BaseModel.extend(
        columns=[admin],
        relationships=[(avatar, Avatar.IdModel)],
        includes=[CreateModel, IndexModel],
    )


with sessionmaker.begin() as session:
    user = User(name="alex", description="cool person", avatar=Avatar(), admin=False)
    session.add(user)
    session.flush()

    print(User.BaseModel.model_validate(user).model_dump())
    # {"id": 0}
    print(User.PatchModel.model_validate({}).model_dump(exclude_defaults=True))
    # {}
    print(User.PatchModel.model_validate({"description": None}).model_dump(exclude_defaults=True))
    # {"description": None}
    print(User.CreateModel.model_validate(user).model_dump())
    # {"name": "alex", "description": "cool person"}
    print(User.IndexModel.model_validate(user).model_dump())
    # {"representation": "User #0: alex"}
    print(User.FullModel.model_validate(user).model_dump())
    # {
    #   "id": 0,
    #   "name": "alex",
    #   "description": "cool person",
    #   "representation": "User #0: alex",
    #   "avatar": {"id": 0},
    #   "admin": False
    # }

Assert Contains

The "assert contains" is an interface for validating data, mainly used in testing. Use "assert-contains" extra to install this module:

pip install pydantic-marshals[assert-contains]

Documentation:

Local development

  1. Clone the repository
  2. Setup python (the library is made with python 3.10+)
  3. Install poetry (should work with v1.4.1)
  4. Install dependencies
  5. Install pre-commit hooks

Commands to use:

pip install poetry==1.4.1
poetry install
pre-commit install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_marshals-0.3.12.tar.gz (11.8 kB view details)

Uploaded Source

Built Distribution

pydantic_marshals-0.3.12-py3-none-any.whl (20.7 kB view details)

Uploaded Python 3

File details

Details for the file pydantic_marshals-0.3.12.tar.gz.

File metadata

  • Download URL: pydantic_marshals-0.3.12.tar.gz
  • Upload date:
  • Size: 11.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.1 CPython/3.11.1 Windows/10

File hashes

Hashes for pydantic_marshals-0.3.12.tar.gz
Algorithm Hash digest
SHA256 1f39cbbc88d731b909b080e524bbdf73d285dee23b573c558e3e32c271c6b1c5
MD5 b68c2a71f277f181811b2829f55c8b0a
BLAKE2b-256 fbc759a8f70ff1fc0d318225684c985eadb689807eae5a515a3a550469b099cb

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_marshals-0.3.12-py3-none-any.whl.

File metadata

File hashes

Hashes for pydantic_marshals-0.3.12-py3-none-any.whl
Algorithm Hash digest
SHA256 a42262da8292794b482738301139cfe543add93abf8588ff214045a2e6feaca8
MD5 447f696df23b0d27c345c9c390529fc7
BLAKE2b-256 13134fe0898074f07997906b2a70579ccc1f965e2e2a15cbf07d7d004f1ceb3e

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page