Skip to main content

Library for creating partial pydantic models (automatic converters) from different mappings

Project description

Pydantic Marshals

Library for creating partial pydantic models (automatic converters) from different mappings. Currently, it consists of basic boilerplate parts and functional implementation for sqlalchemy 2.0+ (included via extra)

Base Interface

TBA

Implementations

TBA

SQLAlchemy: Basic usage

# sqlalchemy 2.0+ is required
from sqlalchemy import ForeignKey, String, Text
from sqlalchemy.orm import Mapped, mapped_column, relationship

from pydantic_marshals.sqlalchemy import MappedModel

class Avatar(Base):
    __tablename__ = "avatars"
    id: Mapped[int] = mapped_column(primary_key=True)
    IdModel = MappedModel.create(columns=[id])

class User(Base):
    __tablename__ = "users"
    id: Mapped[int] = mapped_column(primary_key=True)
    name: Mapped[str] = mapped_column(String(100))
    description: Mapped[str | None] = mapped_column(Text())
    admin: Mapped[bool] = mapped_column()  # empty `mapped_column()` is required for models

    avatar_id: Mapped[int] = mapped_column(ForeignKey("avatars.id"))
    avatar: Mapped[Avatar] = relationship()

    @property
    def representation(self) -> str:
        return f"User #{self.id}: {self.name}"

    BaseModel = MappedModel.create(columns=[id])
    CreateModel = MappedModel.create(columns=[name, description])
    PatchModel = CreateModel.as_patch()
    IndexModel = MappedModel.create(properties=[representation])
    FullModel = BaseModel.extend(
        columns=[admin],
        relationships=[(avatar, Avatar.IdModel)],
        includes=[CreateModel, IndexModel],
    )


with sessionmaker.begin() as session:
    user = User(name="alex", description="cool person", avatar=Avatar(), admin=False)
    session.add(user)
    session.flush()

    print(User.BaseModel.model_validate(user).model_dump())
    # {"id": 0}
    print(User.PatchModel.model_validate({}).model_dump(exclude_defaults=True))
    # {}
    print(User.PatchModel.model_validate({"description": None}).model_dump(exclude_defaults=True))
    # {"description": None}
    print(User.CreateModel.model_validate(user).model_dump())
    # {"name": "alex", "description": "cool person"}
    print(User.IndexModel.model_validate(user).model_dump())
    # {"representation": "User #0: alex"}
    print(User.FullModel.model_validate(user).model_dump())
    # {
    #   "id": 0,
    #   "name": "alex",
    #   "description": "cool person",
    #   "representation": "User #0: alex",
    #   "avatar": {"id": 0},
    #   "admin": False
    # }

Assert Contains

The "assert contains" is an interface for validating data, mainly used in testing. Use "assert-contains" extra to install this module:

pip install pydantic-marshals[assert-contains]

Documentation:

Local development

  1. Clone the repository
  2. Setup python (the library is made with python 3.10+)
  3. Install poetry (should work with v1.4.1)
  4. Install dependencies
  5. Install pre-commit hooks

Commands to use:

pip install poetry==1.4.1
poetry install
pre-commit install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_marshals-0.3.14.tar.gz (12.4 kB view details)

Uploaded Source

Built Distribution

pydantic_marshals-0.3.14-py3-none-any.whl (21.8 kB view details)

Uploaded Python 3

File details

Details for the file pydantic_marshals-0.3.14.tar.gz.

File metadata

  • Download URL: pydantic_marshals-0.3.14.tar.gz
  • Upload date:
  • Size: 12.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.1 CPython/3.12.2 Windows/10

File hashes

Hashes for pydantic_marshals-0.3.14.tar.gz
Algorithm Hash digest
SHA256 11239901fdda41d7b23dbdeb114d181c325396bd1bc09d7d1ecb77bec03b5930
MD5 173e79a8db761d6c817e4d3bc0a1e593
BLAKE2b-256 691217f4598d9875b89d0de86ed6b32f475cc5de483d841551167b9968592dd4

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_marshals-0.3.14-py3-none-any.whl.

File metadata

File hashes

Hashes for pydantic_marshals-0.3.14-py3-none-any.whl
Algorithm Hash digest
SHA256 b66f81f3d63419439e59bf0024c12fcc4569629a91bdf8ec570e9990acdcd1b2
MD5 ae30a780ef475aed4a7ac41044affafd
BLAKE2b-256 38da2f71d578fc2805408b654d3531a3aaacc8026790d0362c8f8c0fe7d936de

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page