Skip to main content

Library for creating partial pydantic models (automatic converters) from different mappings

Project description

Pydantic Marshals

Library for creating partial pydantic models (automatic converters) from different mappings. Currently, it consists of basic boilerplate parts and functional implementation for sqlalchemy 2.0+ (included via extra)

Base Interface

TBA

Implementations

TBA

SQLAlchemy: Basic usage

# sqlalchemy 2.0+ is required
from sqlalchemy import ForeignKey, String, Text
from sqlalchemy.orm import Mapped, mapped_column, relationship

from pydantic_marshals.sqlalchemy import MappedModel

class Avatar(Base):
    __tablename__ = "avatars"
    id: Mapped[int] = mapped_column(primary_key=True)
    IdModel = MappedModel.create(columns=[id])

class User(Base):
    __tablename__ = "users"
    id: Mapped[int] = mapped_column(primary_key=True)
    name: Mapped[str] = mapped_column(String(100))
    description: Mapped[str | None] = mapped_column(Text())
    admin: Mapped[bool] = mapped_column()  # empty `mapped_column()` is required for models

    avatar_id: Mapped[int] = mapped_column(ForeignKey("avatars.id"))
    avatar: Mapped[Avatar] = relationship()

    @property
    def representation(self) -> str:
        return f"User #{self.id}: {self.name}"

    BaseModel = MappedModel.create(columns=[id])
    CreateModel = MappedModel.create(columns=[name, description])
    PatchModel = CreateModel.as_patch()
    IndexModel = MappedModel.create(properties=[representation])
    FullModel = BaseModel.extend(
        columns=[admin],
        relationships=[(avatar, Avatar.IdModel)],
        includes=[CreateModel, IndexModel],
    )


with sessionmaker.begin() as session:
    user = User(name="alex", description="cool person", avatar=Avatar(), admin=False)
    session.add(user)
    session.flush()

    print(User.BaseModel.model_validate(user).model_dump())
    # {"id": 0}
    print(User.PatchModel.model_validate({}).model_dump(exclude_defaults=True))
    # {}
    print(User.PatchModel.model_validate({"description": None}).model_dump(exclude_defaults=True))
    # {"description": None}
    print(User.CreateModel.model_validate(user).model_dump())
    # {"name": "alex", "description": "cool person"}
    print(User.IndexModel.model_validate(user).model_dump())
    # {"representation": "User #0: alex"}
    print(User.FullModel.model_validate(user).model_dump())
    # {
    #   "id": 0,
    #   "name": "alex",
    #   "description": "cool person",
    #   "representation": "User #0: alex",
    #   "avatar": {"id": 0},
    #   "admin": False
    # }

Assert Contains

The "assert contains" is an interface for validating data, mainly used in testing. Use "assert-contains" extra to install this module:

pip install pydantic-marshals[assert-contains]

Documentation:

Local development

  1. Clone the repository
  2. Setup python (the library is made with python 3.10+)
  3. Install poetry (should work with v1.4.1)
  4. Install dependencies
  5. Install pre-commit hooks

Commands to use:

pip install poetry==1.4.1
poetry install
pre-commit install

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_marshals-0.3.4.tar.gz (11.4 kB view details)

Uploaded Source

Built Distribution

pydantic_marshals-0.3.4-py3-none-any.whl (20.3 kB view details)

Uploaded Python 3

File details

Details for the file pydantic_marshals-0.3.4.tar.gz.

File metadata

  • Download URL: pydantic_marshals-0.3.4.tar.gz
  • Upload date:
  • Size: 11.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.1 CPython/3.11.1 Windows/10

File hashes

Hashes for pydantic_marshals-0.3.4.tar.gz
Algorithm Hash digest
SHA256 b5245f8253828bc101a69cee596b7a2b0701df90ad226ba7a911c0d999fabdf8
MD5 7c6b957290131b1326f6bf0cf514b043
BLAKE2b-256 729b330b513aa981378cf4c77a5f7b8a08e9794fdf34d4f7d0b932e843d9ae1c

See more details on using hashes here.

Provenance

File details

Details for the file pydantic_marshals-0.3.4-py3-none-any.whl.

File metadata

File hashes

Hashes for pydantic_marshals-0.3.4-py3-none-any.whl
Algorithm Hash digest
SHA256 f552eb3df7350b3707d861879d405c7dc7592439460c680cc3a7f11aa099eb24
MD5 c15317b7fd15ea19feab0aaca1e1fac7
BLAKE2b-256 b1682e36c06e53aac46d954c109939217eafe0843c3004316716e7e265a4baac

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page